精英家教网 > 高中数学 > 题目详情

【题目】已知动点 到点 的距离比它到直线 的距离小 ,记动点 的轨迹为 .若以 为圆心, 为半径( )作圆,分别交 轴于 两点,连结并延长 ,分别交曲线 两点.
(1)求曲线 的方程;
(2)求证:直线 的斜率为定值.

【答案】
(1)解:动点 到点 的距离比它到直线 的距离小 ,可得动点 到点 的距离与它到直线 的距离相等,由定义可得曲线 方程为
(2)解:设 与抛物线方程 联立得:
由题意有
【解析】本题考查抛物线方程的求法,考查两直线的斜率的比值是否为定值的判断与求法,解题时要认真审题,注意直线方程的合理运用.
【考点精析】认真审题,首先需要了解抛物线的定义(平面内与一个定点和一条定直线的距离相等的点的轨迹称为抛物线.定点称为抛物线的焦点,定直线称为抛物线的准线).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点为F1(﹣ ,0),F2 ,0),M是椭圆上一点,若 =0,| || |=8.
(1)求椭圆的方程;
(2)点P是椭圆上任意一点,A1、A2分别是椭圆的左、右顶点,直线PA1 , PA2与直线x= 分别交于E,F两点,试证:以EF为直径的圆交x轴于定点,并求该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了引导居民合理用水,某市决定全面实施阶梯水价,阶梯水价原则上以住宅(一套住宅为一户)的月用水量为基准定价,具体划分标准如表:

阶梯级别

第一阶梯水量

第二阶梯水量

第三阶梯水量

月用水量范围(单位:立方米)

(0,10]

(10,15]

(15,+∞)

从本市随机抽取了10户家庭,统计了同一个月的用水量,得到如图所示的茎叶图.

(1)现要在这10户家庭中任意选取3户,求取到第二阶梯水量的户数的分布列和均值;
(2)用抽到的10户家庭作为样本估计全市的居民用水情况,从全市依次随机抽取10户,若抽到n户月用水量为第二阶梯水量的可能性最大,求出n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 (本小题满分12)

已知圆C,直线过定点A (10).

1)若与圆C相切,求的方程;

2)若与圆C相交于PQ两点,求三角形CPQ的面积的最大值,并求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列中,若对任意都有为常数)成立,则称为“等差比数列”,下面对“等差比数列” 的判断:①不可能为;②等差数列一定是等差比数列; ③等比数列一定是等差比数列 ;④通项公式为(其中,且)的数列一定是等差比数列,其中正确的判断是( )

A. ①③④ B. ②③④ C. ①④ D. ①③

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 ,以原点为圆心,双曲线的实半轴长为半径的圆与双曲线的两条渐近线相交于 四点,四边形 的面积为 ,则双曲线的离心率为( )
A.
B.2
C.
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln(x+1)+ax,其中a∈R.
(Ⅰ) 当a=﹣1时,求证:f(x)≤0;
(Ⅱ) 对任意x2≥ex1>0,存在x∈(﹣1,+∞),使 成立,求a的取值范围.(其中e是自然对数的底数,e=2.71828…)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位: )分别为 ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )
A. 的平均数
B. 的标准差
C. 的最大值
D. 的中位数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若关于x的不等式 至少有一个负数解,则实数a的取值范围是( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案