分析 先求得抛物线的准线方程,进而求得双曲线的准线方程表达式,进而求得b,则c可得,进而求得双曲线的离心率.
解答 解:依题意可知抛物线准线方程为x=-2,准线在x轴上
∴双曲线的准线方程为x=-$\frac{2}{\sqrt{2+m}}$,∴-$\frac{2}{\sqrt{2+m}}$=-1,解得m=2.
∴c=$\sqrt{2+m}$=2.
∴双曲线的离心率e=$\frac{c}{a}$=$\frac{2}{\sqrt{2}}$=$\sqrt{2}$.
故答案为:$\sqrt{2}$.
点评 本题主要考查了双曲线的简单性质.解题的关键是熟练掌握双曲线性质中长轴、短轴、焦距、离心率等之间的关系.
科目:高中数学 来源: 题型:选择题
A. | (-∞,-1] | B. | (-∞,1] | C. | [-1,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\widehat{y}$=1.04x+2 | B. | $\widehat{y}$=1.04x+1.9 | C. | $\widehat{y}$=1.05x+1.9 | D. | $\widehat{y}$=1.9x+1.04 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{\sqrt{6}}}{3}$ | B. | $\frac{{\sqrt{10}}}{5}$ | C. | $\frac{\sqrt{15}}{5}$ | D. | $\frac{{\sqrt{14}}}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com