精英家教网 > 高中数学 > 题目详情

【题目】已知函数,函数在点处的切线与函数相切.

1)求函数的值域;

2)求证:.

【答案】1;(2)证明见解析.

【解析】

1)利用导数求出曲线在点处的切线方程,与函数的解析式联立,由可求得的值,然后利用二次函数的基本性质可求得函数的值域;

2)要证明,即证,即证,求出函数的最小值,并利用导数求出函数的最大值,由此可得出结论.

1)切点,则.

所以,函数在点处的切线方程为,即.

函数在点处的切线与函数相切.

联立,化为

,解得.

,所以,函数的值域为

2)要证,即证,即证.

,则函数的定义域为.

.

时,,此时,函数单调递增;

时,,此时,函数单调递减.

所以,函数的最大值为.

所以,,但是函数的最小值和函数的最大值不在同一处取得,

因此,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线Cx22pyp0),F为抛物线C的焦点.以F为圆心,p为半径作圆,与抛物线C在第一象限交点的横坐标为2

1)求抛物线C的方程;

2)直线ykx+1与抛物线C交于AB两点,过AB分别作抛物线C的切线l1l2,设切线l1l2的交点为P,求证:△PAB为直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年春节期间全国流行在微信群里发抢红包,现假设某人将688元发成手气红包50个,产生的手气红包频数分布表如下:

金额分组

3

9

17

11

8

2

1)求产生的手气红包的金额不小于9元的频率;

2)估计手气红包金额的平均数(同一组中的数据用该组区间的中点值作代表)

3)在这50个红包组成的样本中,将频率视为概率.

①若红包金额在区间内为最佳运气手,求抢得红包的某人恰好是最佳运气手的概率;

②随机抽取手气红包金额在内的两名幸运者,设其手气金额分别为,求事件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知离心率为的椭圆的短轴的两个端点分别为为椭圆上异于的动点,且的面积最大值为.

)求椭圆的方程;

)射线与椭圆交于点,过点作倾斜角互补的两条直线,它们与椭圆的另一个交点分别为点和点,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(2﹣a)(x﹣1)﹣2lnx,g(x)= aR,e为自然对数的底数)

(Ⅰ)当a=1时,求f(x)的单调区间;

(Ⅱ)若函数f(x)在 上无零点,求a的最小值;

(Ⅲ)若对任意给定的x0∈(0,e],在(0,e]上总存在两个不同的xi(i=1,2),使得f(xi)=g(x0)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校近几年来通过书香校园主题系列活动,倡导学生整本阅读纸质课外书籍.下面的统计图是该校2013年至2018年纸质书人均阅读量的情况,根据统计图提供的信息,下列推断不合理的是(

A.2013年到2016年,该校纸质书人均阅读量逐年增长

B.2013年至2018年,该校纸质书人均阅读量的中位数是46.7

C.2013年至2018年,该校纸质书人均阅读量的极差是45.3

D.2013年至2018年,该校后三年纸质书人均阅读量总和是前三年纸质书人均阅读量总和的2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为正方形,PACEAB=CEPAPA⊥平面ABCD.

1)证明:PE⊥平面DBE

2)求二面角BPDE的正弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1)试比较的大小.

2)若函数的两个零点分别为

①求的取值范围;

②证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位同学参加某个知识答题游戏节目,答题分两轮,第一轮为“选题答题环节”第二轮为“轮流坐庄答题环节”.首先进行第一轮“选题答题环节”,答题规则是:每位同学各自从备选的5道不同题中随机抽出3道题进行答题,答对一题加10分,答错一题(不答视为答错)减5分,已知甲能答对备选5道题中的每道题的概率都是,乙恰能答对备选5道题中的其中3道题;第一轮答题完毕后进行第二轮“轮流坐庄答题环节”,答题规则是:先确定一人坐庄答题,若答对,继续答下一题…,直到答错,则换人(换庄)答下一题…以此类推.例如若甲首先坐庄,则他答第1题,若答对继续答第2题,如果第2题也答对,继续答第3题,直到他答错则换成乙坐庄开始答下一题,…直到乙答错再换成甲坐庄答题,依次类推两人共计答完20道题游戏结束,假设由第一轮答题得分期望高的同学在第二轮环节中最先开始作答,且记第道题也由该同学(最先答题的同学)作答的概率为),其中,已知供甲乙回答的20道题中,甲,乙两人答对其中每道题的概率都是,如果某位同学有机会答第道题且回答正确则该同学加10分,答错(不答视为答错)则减5分,甲乙答题相互独立;两轮答题完毕总得分高者胜出.回答下列问题

1)请预测第二轮最先开始作答的是谁?并说明理由

2)①求第二轮答题中

②求证为等比数列,并求)的表达式.

查看答案和解析>>

同步练习册答案