精英家教网 > 高中数学 > 题目详情

 求过圆x2+y2-x+y-2=0和x2+y2=5的交点,且圆心在直线3x+4y-1=0上的圆的方程。

 

 

 

 

 

 

【答案】

 (x+1)2+(y-1)2=13.    

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1
,(a>b>0)的两焦点分别为F1、F2|F1F2|=4
2
,离心率e=
2
2
3
.过直线l:x=
a2
c
上任意一点M,引椭圆C的两条切线,切点为A、B.
(1)在圆中有如下结论:“过圆x2+y2=r2上一点P(x0,y0)处的切线方程为:x0x+y0y=r2”.由上述结论类比得到:“过椭圆
x2
a2
+
y2
b2
=1
(a>b>0),上一点P(x0,y0)处的切线方程”(只写类比结论,不必证明).
(2)利用(1)中的结论证明直线AB恒过定点(2
2
,0
);
(3)当点M的纵坐标为1时,求△ABM的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

命题p:过原点O可以作两条直线与圆x2+y2+x-3y+
5
4
(m2+m)=0
相切,
命题q:直线(m+
3
2
)x-y+m-
1
2
=0
不过第二象限,
若命题“p∧q”为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求圆心在直线3x+4y-1=0上,且过两圆x2+y2-x+y-2=0与x2+y2=5交点的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)已知椭圆C:
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
的两个焦点分别为F1(-1,0),F2(1,0),长半轴长为
2

(1)(i)求椭圆C的方程;
(ii)类比结论“过圆
x
2
 
+
y
2
 
=r2
上任一点(x0,y0)的切线方程是x0x+yy0=
r
2
 
”,归纳得出:过椭圆
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
上任一点(x0,y0)的切线方程是
x0x
a
2
 
+
y0y
b
2
 
=1
x0x
a
2
 
+
y0y
b
2
 
=1

(2)设M,N是直线x=2上的两个点,若
F1M
F2M
=0,求|MN|
的最小值.

查看答案和解析>>

同步练习册答案