精英家教网 > 高中数学 > 题目详情
记函数f(x)在区间D上的最大值与最小值分别为max{f(x)|x∈D}与min{f(x)|x∈D}.设函数f(x)=,1<b<3.g(x)=f(x)+ax,x∈[1,3].
(1)若函数g(x)在[1,3]上单调递减,求a的取值范围;
(2)若a∈R.令,h(a)=max{g(x)|x∈[1,3]}-{g(x)|x∈[1,3]}.记d(b)=min{h(a)|a∈R}.试写出h(a)的表达式,并求min{d(b)|b∈(1,3)};
(3)令k(a)=max{g[f(x)]|x∈l}-min{g[f(x)]|x∈l}(其中l为g[f(x)]的定义域).若l恰好为[1,3],求b的取值范围,并求min{k(a)|a∈R}.
【答案】分析:(1)写出函数g(x),利用函数在[1,3]上单调递减,即可求得a的范围;
(2)分类讨论:0≤a≤,分别求出max{g(x)|x∈[1,3]}与min{g(x)|x∈[1,3]},即可求得h(a)的表达式,利用函数的单调性,可求出min{d(b)|b∈(1,3)};
(3)分类讨论:(ⅰ)当x∈(b,3]时,f(x)=b,g[f(x)]=ab+b;
(ⅱ)当,即x=b时,g[f(x)]=ab+b
(ⅲ)当时,即,g[f(x)]=,由此可得k(a)的表达式,从而可求min{k(a)|a∈R}.
解答:解:(1),(2分)
∵函数g(x)在[1,3]上单调递减,∴,∴a<0(4分)
(2)①当0≤a≤时,max{g(x)|x∈[1,3]}=g(1)=a+2b-1,min{g(x)|x∈[1,3]}=g(b)=ab+b,此时,h(a)=a+b-ab-1
②当时,max{g(x)|x∈[1,3]}=g(3)=3a+b,min{g(x)|x∈[1,3]}=g(b)=ab+b,此时,h(a)=3a-ab,故h(a)=,(2分)
因h(a)在[0,]上单调递减,在[,1]单调递增,故d(b)=min{h(a)|a∈R}=h()=,(4分)
故当b=2时,得min{d(b)|b∈(1,3)}=.     (6分)
(3)(ⅰ)当x∈(b,3]时,f(x)=b,g[f(x)]=ab+b
(ⅱ)当,即x=b时,g[f(x)]=ab+b
(ⅲ)当时,即(*),(3分)
①若2b-3>1即b>2,由(*)知x∈[2b-3,b),但此时I=[2b-3)∪{b}∪(b,3]≠[1,3],所以b>2不合题意.
②若2b-3≤1即b≤2,由(*)知x∈[1,b),此时I=[1,b))∪{b}∪(b,3]=[1,3],故1<b≤2,(5分)      
且g[f(x)]=
于是,当a≤0时,k(a)=(ab+b)-(2ab+b-a)=(1-b)a
当a>0时,k(a)=(2ab+b-a)-(ab+b)=(b-1)a
即k(a)=                    (7分)
从而可得当a=0时,min{k(a)|a∈R}=0.(8分)
点评:本题考查新定义,考查函数的单调性与最值,考查分类讨论的数学思想,解题的关键是确定分类标准,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.
(1)求函数f(x)的解析式;
(2)记函数f(x)在区间[2a,a+1]上的最大值为g(a),当a≥-4时,求g(a)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•闵行区一模)记函数f(x)在区间D上的最大值与最小值分别为max{f(x)|x∈D}与min{f(x)|x∈D}.设函数f(x)=
-x+2b,x∈[1,b]
b,      x∈(b,3]
(1<b<3),g(x)=f(x)+ax,x∈[1,3],令h(a)=max{g(x)|x∈[1,3]}-min{g(x)|x∈[1,3]},记d(b)=min{h(a)|a∈R}.
(1)若函数g(x)在[1,3]上单调递减,求a的取值范围;
(2)当a=
b-1
2
时,求h(a)关于a的表达式;
(3)试写出h(a)的表达式,并求max{d(b)|b∈(1,3)}.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•闵行区一模)记函数f(x)在区间D上的最大值与最小值分别为max{f(x)|x∈D}与min{f(x)|x∈D}.设函数f(x)=
-x+2b,  x∈[1,b]
b,         x∈(b,3]
,1<b<3.g(x)=f(x)+ax,x∈[1,3].
(1)若函数g(x)在[1,3]上单调递减,求a的取值范围;
(2)若a∈R.令,h(a)=max{g(x)|x∈[1,3]}-{g(x)|x∈[1,3]}.记d(b)=min{h(a)|a∈R}.试写出h(a)的表达式,并求min{d(b)|b∈(1,3)};
(3)令k(a)=max{g[f(x)]|x∈l}-min{g[f(x)]|x∈l}(其中l为g[f(x)]的定义域).若l恰好为[1,3],求b的取值范围,并求min{k(a)|a∈R}.

查看答案和解析>>

科目:高中数学 来源:2012年上海市闵行区高考数学一模试卷(文科)(解析版) 题型:解答题

记函数f(x)在区间D上的最大值与最小值分别为max{f(x)|x∈D}与min{f(x)|x∈D}.设函数f(x)=(1<b<3),g(x)=f(x)+ax,x∈[1,3],令h(a)=max{g(x)|x∈[1,3]}-min{g(x)|x∈[1,3]},记d(b)=min{h(a)|a∈R}.
(1)若函数g(x)在[1,3]上单调递减,求a的取值范围;
(2)当a=时,求h(a)关于a的表达式;
(3)试写出h(a)的表达式,并求max{d(b)|b∈(1,3)}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

记函数f(x)在区间D上的最大值与最小值分别为max{f(x)|x∈D}与min{f(x)|x∈D}.设函数f(x)=数学公式,1<b<3.g(x)=f(x)+ax,x∈[1,3].
(1)若函数g(x)在[1,3]上单调递减,求a的取值范围;
(2)若a∈R.令,h(a)=max{g(x)|x∈[1,3]}-{g(x)|x∈[1,3]}.记d(b)=min{h(a)|a∈R}.试写出h(a)的表达式,并求min{d(b)|b∈(1,3)};
(3)令k(a)=max{g[f(x)]|x∈l}-min{g[f(x)]|x∈l}(其中l为g[f(x)]的定义域).若l恰好为[1,3],求b的取值范围,并求min{k(a)|a∈R}.

查看答案和解析>>

同步练习册答案