A. | (-∞,$\frac{\sqrt{2}}{2}$) | B. | (-∞,$\sqrt{2}$) | C. | (-∞,$\frac{3}{2}$) | D. | ($\frac{3}{2}$,$\frac{9}{4}$) |
分析 由题意知f(x)-m>0对一切x∈($\frac{1}{2}$,2)恒成立,可转化为:m<x+$\frac{1}{2x}$ 在($\frac{1}{2}$,2)上恒成立.
解答 解:∵f(x)-m>0 即 f(x)>m⇒m<x+$\frac{1}{2x}$;
令h(x)=x+$\frac{1}{2x}$
h'(x)=1-$\frac{1}{2}$•$\frac{1}{{x}^{2}}$,令h'(x)=0⇒x=±$\frac{\sqrt{2}}{2}$ (负舍);
所以,h(x)在($\frac{1}{2}$,$\frac{\sqrt{2}}{2}$)上单调递减,($\frac{\sqrt{2}}{2}$,2)上单调递增;
∴h(x)min=$\sqrt{2}$;
所以,m的取值范围为(-∞,$\sqrt{2}$);
故选:B
点评 本题主要考察了对勾函数、利用导数判断原函数单调性以及函数恒成立问题,属中等题.
科目:高中数学 来源: 题型:选择题
A. | (1,2) | B. | (1,3] | C. | (1,$\frac{3}{2}$) | D. | (1,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{6}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (2,$\frac{19}{8}$) | B. | (2,3) | C. | (2,$\frac{19}{8}$] | D. | (2,3] |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com