精英家教网 > 高中数学 > 题目详情

【题目】中国的钨矿资源储量丰富,在全球已经探明的钨矿产资源储量中占比近,居全球首位。中国又属赣州钨矿资源最为丰富,其素有世界钨都之称。某科研单位在研发的钨合金产品的过程中发现了一种新合金材料,由大数据测得该产品的性能指标值与这种新合金材料的含量x(单位:)的关系为:, 的二次函数;, .测得部分数据如表.

x(单位:克)

0

1

2

9

y

0

3

1)求y关于x的函数关系式y=

2)求函数的最大值

【答案】(1) (2) 最大值为

【解析】

1)当0≤x6时,yx的二次函数,可设yax2+bx+ca≠0),代入前三组数据,解方程可得abc;当x≥6时,y=(xt,代入数据x9y,可得t,即可得到fx)的解析式;

2)分别运用二次函数的最值求法和指数函数的单调性,即可得到所求最大值.

(1).,由题意,.

由表格数据可得,解得

所以,,

,

由表格数据可得,解得.

所以当, ,综上,

(2), .

所以当,函数的最大值为;

, 单调递减,所以的最大值为

因为,所以函数的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,,点中点.

(1)求证:

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,平面PAD⊥底面 ABCD,侧棱PA=PD,底面ABCD为直角梯形,其中BC∥AD AB⊥ADAD=2AB=2BC=2,OAD中点.

)求证:PO⊥平面ABCD

)线段AD上是否存在点,使得它到平面PCD的距离为?若存在,求出值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的参数方程为为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为.

(1)写出直线的普通方程及曲线的直角坐标方程;

(2)已知点,点,直线过点且与曲线相交于两点,设线段的中点为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)当时,求的图象在处的切线方程;

(Ⅱ)若函数图象在上有两个不同的交点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂某种产品的年固定成本为250万元,每生产,需另投入成本为,当年产量不足80时,(万元).当年产量不小于80时,(万元).每件商品售价为50.通过市场分析,该厂生产的商品能全部售完.

1)写出年利润(万元)关于年产量)的函数解析式;

2)年产量为多少时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的. [附:回归直线的斜率和截距的最小二乘估计公式分别为.]

(1)根据频率分布直方图计算图中各小长方形的宽度;

(2)试估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);

(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:

广告投入 (单位:万元)

1

2

3

4

5

销售收益 (单位:万元)

2

3

2

7

由表中的数据显示, 之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出关于的回归直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与曲线恰有两个不同的交点,记的所有可能取值构成集合是椭圆上一动点,点与点关于直线对称,记的所有可能取值构成集合,若随机从集合中分别抽出一个元素,则的概率是___

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知几何体,其中四边形为直角梯形,四边形为矩形, ,且 .

(1)试判断线段上是否存在一点,使得平面,请说明理由;

(2)若,求该几何体的表面积.

查看答案和解析>>

同步练习册答案