精英家教网 > 高中数学 > 题目详情
对于任意实数a、b定义运算“*”,如下,则的值域为   
【答案】分析:根据新定义对于任意实数a、b定义运算“*”,就是取最小值,,讨论与log2x的大小关系,再根据新定义进行求解;
解答:解:对于任意实数a、b定义运算“*”,如下
其实质就是去最小值,
,(x>
,解得<x≤1,此时=log2x,可得<f(x)≤0,
,解得x>1,此时=,可得,<0,
综上:f(x)≤0;
故答案为:(-∞,0];
点评:此题主要考查函数值域的求法,以及新定义的理解,是一道基础题;
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设A(x1,y1),B(x2,y2)是函数f(x)=
1
2
+log2
x
1-x
的图象上两点,且
OM
=
1
2
(
OA
+
OB
)
,O为坐标原点,已知点M的横坐标为
1
2

(Ⅰ)求证:点M的纵坐标为定值;
(Ⅱ)定义定义Sn=
n-1
i=1
f(
i
n
)=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*且n≥2,求S2011
(Ⅲ)对于(Ⅱ)中的Sn,设an=
1
2Sn+1
(n∈N*)
.若对于任意n∈N*,不等式kan3-3an2+1>0恒成立,试求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点M(0,-1),直线l:y=mx+1与曲线C:ax2+y2=2(m,a∈R)交于A、B两点.
(1)当m=0时,有∠AOB=
π
3
,求曲线C的方程;
(2)当实数a为何值时,对任意m∈R,都有
OA
OB
为定值T?指出T的值;
(3)设动点P满足
MP
=
OA
+
OB
,当a=-2,m变化时,求点P的轨迹方程;
(4)是否存在常数M,使得对于任意的a∈(0,1),m∈R,都有
OA
OB
<M
恒成立?如果存在,求出的M得最小值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:阅读理解

(Ⅰ)阅读理解:
①对于任意正实数a,b,∵(
a
-
b
)2≥0, ∴a-2
ab
+b≥0
,∴a+b≥2
ab

只有当a=b时,等号成立.
②结论:在a+b≥2
ab
(a,b均为正实数)中,若ab为定值p,则a+b≥2
p

只有当a=b时,a+b有最小值2
p

(Ⅱ)结论运用:根据上述内容,回答下列问题:(提示:在答题卡上作答)
①若m>0,只有当m=
 
时,m+
1
m
有最小值
 

②若m>1,只有当m=
 
时,2m+
8
m-1
有最小值
 

(Ⅲ)探索应用:
学校要建一个面积为392m2的长方形游泳池,并且在四周要修建出宽为2m和4m的小路(如图).问游泳池的长和宽分别为多少米时,共占地面积最小?并求出占地面积的最小值.
精英家教网

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点M(0,-1),直线l:y=mx+1与曲线C:ax2+y2=2(m,a∈R)交于A、B两点.
(1)当m=0时,有∠AOB=
π
3
,求曲线C的方程;
(2)当实数a为何值时,对任意m∈R,都有
OA
OB
为定值T?指出T的值;
(3)设动点P满足
MP
=
OA
+
OB
,当a=-2,m变化时,求点P的轨迹方程;
(4)是否存在常数M,使得对于任意的a∈(0,1),m∈R,都有
OA
OB
<M
恒成立?如果存在,求出的M得最小值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2009年上海市浦东新区建平中学高考数学三模试卷(理科)(解析版) 题型:解答题

已知点M(0,-1),直线l:y=mx+1与曲线C:ax2+y2=2(m,a∈R)交于A、B两点.
(1)当m=0时,有,求曲线C的方程;
(2)当实数a为何值时,对任意m∈R,都有为定值T?指出T的值;
(3)设动点P满足,当a=-2,m变化时,求点P的轨迹方程;
(4)是否存在常数M,使得对于任意的a∈(0,1),m∈R,都有恒成立?如果存在,求出的M得最小值;如果不存在,说明理由.

查看答案和解析>>

同步练习册答案