精英家教网 > 高中数学 > 题目详情
已知函数f(x)=|x-1|+|x+1|(x∈R)
(1)证明:函数f(x)是偶函数;
(2)利用绝对值及分段函数知识,将函数解析式写成分段函数的形式,然后画出函数图象,并写出函数的值域;
(3)在同一坐标系中画出直线y=x+2,观察图象写出不等式f(x)>x+2的解集.
分析:(1)根据函数的解析式,我们判断f(-x)与f(x)的关系,进而根据函数奇偶性的定义可得函数的奇偶性,
(2)先将带绝对值的函数转化成分段函数的形式,进而结合分段函数的图象和性质及偶函数图象关于y轴对称,可得函数简图;
(3)根据(2)中函数简图,数形结合可在同一坐标系中画出直线y=x+2,观察图象写出不等式f(x)>x+2的解集.
解答:解:(1)f(-x)=|-x-1|+|-x+1|=|x+1|+|x-1|=f(x)
∴f(x)是偶函数   
(2)原函数式可化为:
f(x)=
-2x,x<-1
2,-1≤x≤1
2x,x>1
;其图象如图所示,
由函数图象知,函数的值域为[2,+∞)  …(9分)
(3)由函数图象知,
当x=0或2时,f(x)=x+2.
结合图象可得,不等式的解集为{x|x<0或x>2}…(12分)
点评:本题考查的知识点是带绝对值的函数的图象和性质,函数奇偶性的判断,其中画出函数的图象是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案