精英家教网 > 高中数学 > 题目详情
已知命题P:x1、x2是方程x2-mx-2=0的两个实根,不等式a2-5a-3≥|x1-x2|对任意实数m∈[-1,1]恒成立;命题q:只有一个实数x满足不等式x2+2
2
ax+11a≤0

若命题p是假命题,同时命题q是真命题,求a的取值范围.
分析:由题条件,先解出两个命题为真命题时的等价条件,再根据命题p是假命题,同时命题q是真命题,求a的取值范围
解答:解:p为真命题时,由|x1-x2|=
(x1+x2)2-4x1x2
=
m2+8
≤3∴a2-5a-6≥0
,∴a≥6或a≤-1
q为真命题时,△=(2
2
a)2-44a=0∴a=0或a=
11
2

由p假q真,∴
-1<a<6
a=0或a=
11
2
∴a=0或a=
11
2
点评:本题必要条件、充分条件与充要条件的判断与应用,求解本题关键是对p条件中恒成立问题的正确转化以及q条件中只有一个实数满足不等式这个存在性问题的正确理解与转化.此两点也是本题的易错点,厘清逻辑关系很重要.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下面给出的4个命题:
①已知命题p:?x1,x2∈R,
f(x1)-f(x2)
x1-x2
<0
,则?p:?x1,x2∈R,
f(x1)-f(x2)
x1-x2
≥0

②函数f(x)=2-x-sinx在[0,2π]上恰好有2个零点;
③对于定义在区间[a,b]上的连续不断的函数y=f(x),存在c∈(a,b),使f(c)=0的必要不充分条件是f(a)f(b)<0;
④对于定义在R上的函数f(x),若实数x0满足f(x0)=x0,则称x0是f(x)的不动点.若f(x)=x2+ax+1不存在不动点,则a的取值范围是(-1,3).
其中正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下面给出的4个命题:
①已知命题p:?x1,x2∈R,
f(x1)-f(x2)
x1-x2
<0
,则?p:?x1,x2∈R,
f(x1)-f(x2)
x1-x2
≥0

②函数f(x)=2-x-sinx在[0,2π]上恰好有2个零点;
③对于定义在区间[a,b]上的连续不断的函数y=f(x),存在c∈(a,b),使f(c)=0的必要不充分条件是f(a)f(b)<0;
④对于定义在R上的函数f(x),若实数x0满足f(x0)=x0,则称x0是f(x)的不动点.若f(x)=x2+ax+1不存在不动点,则a的取值范围是(-1,3).
其中正确命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知命题P:x1、x2是方程x2-mx-2=0的两个实根,不等式a2-5a-3≥|x1-x2|对任意实数m∈[-1,1]恒成立;命题q:只有一个实数x满足不等式x2+2
2
ax+11a≤0

若命题p是假命题,同时命题q是真命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:江苏同步题 题型:解答题

已知命题P:x1、x2是方程x2﹣mx﹣2=0的两个实根,不等式a2﹣5a﹣3≥|x1﹣x2|对任意实数m∈[-1,1] 恒成立;命题q:只有一个实数x满足不等式x2+ax+11a≤0,若命题p是假命题,同时命题q是真命题,求a的取值范围.

查看答案和解析>>

同步练习册答案