精英家教网 > 高中数学 > 题目详情

【题目】在“新零售”模式的背景下,某大型零售公司咪推广线下分店,计划在市的区开设分店,为了确定在该区开设分店的个数,该公司对该市已开设分店听其他区的数据作了初步处理后得到下列表格.记表示在各区开设分店的个数, 表示这个个分店的年收入之和.

(个)

2

3

4

5

6

(百万元)

2.5

3

4

4.5

6

(1)该公司已经过初步判断,可用线性回归模型拟合的关系,求关于的线性回归方程

(2)假设该公司在区获得的总年利润(单位:百万元)与之间的关系为,请结合(1)中的线性回归方程,估算该公司应在区开设多少个分店时,才能使区平均每个店的年利润最大?

(参考公式: ,其中

【答案】(1) ;(2) 该公司应开设4个分店时,在该区的每个分店的平均利润最大.

【解析】试题分析:

(1)根据所给数据,按照公式计算回归方程中的系数即可;

2利用(1)得利润与分店数之间的估计值,计算,由基本不等式可得最大值.

试题解析:

(1)由表中数据和参考数据得:

,∴

(2)由题意,可知总收入的预报值之间的关系为:

设该区每个分店的平均利润为,则

的预报值之间的关系为

则当时, 取到最大值,

故该公司应开设4个分店时,在该区的每个分店的平均利润最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设定义在(0,+∞)上的函数f(x)满足xf′(x)﹣f(x)=xlnx,f( )= ,则f(x)(
A.有极大值,无极小值
B.有极小值,无极大值
C.既有极大值,又有极小值
D.既无极大值,也无极小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=1,an+1=3an+1.
(1)证明{an+ }是等比数列,并求{an}的通项公式;
(2)证明: + +…+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(x+ ),x∈R,且f( )=
(1)求A的值;
(2)若f(θ)+f(﹣θ)= ,θ∈(0, ),求f( ﹣θ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3﹣tx2+3x,若对于任意的a∈[1,2],b∈(2,3],函数f(x)在区间(a,b)上单调递减,则实数t的取值范围是(  )
A.(﹣∞,3]
B.(﹣∞,5]
C.[3,+∞)
D.[5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为1的正方体中,点E、F分别是棱BC,的中点,P是侧面内一点,若平面AEF,则线段长度的取值范围是_________。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知点P是平行四边形ABCD所在平面外一点,M、N分别是AB、PC的中点.

(1)求证:MN∥平面PAD;

(2)在PB上确定一个点Q,使平面MNQ∥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l过直线x﹣y﹣1=0与直线2x+y﹣5=0的交点P.

(1)若l与直线x+3y﹣1=0垂直,求l的方程;

(2)点A(﹣1,3)和点B(3,1)到直线l的距离相等,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列 的通项公式是 ,那么这个数列是(
A.递增数列
B.递减数列
C.常数列
D.摆动数列

查看答案和解析>>

同步练习册答案