½â£º£¨¢ñ£©µ±n¡Ý2ʱ£¬
£¬
ÕûÀíµÃa
n=qa
n-1ÓÖÓÉ
£¬µÃa
1=q
½áºÏq£¾0Öª£¬ÊýÁÐa
nÊÇÊ×ÏîΪq¹«±ÈΪqµÄµÈ±ÈÊýÁУ¬
¡àa
n=q•q
n-1=q
n£¨¢ò£©½áºÏ£¨¢ñ£©Öª£¬µ±q=2ʱ£¬a
n=2
n£¬ËùÒÔc
n=2
n+3
n¼ÙÉè´æÔÚʵÊý¦Ë£¬Ê¹ÊýÁÐc
n+1+¦Ëc
nÊǵȱÈÊýÁУ¬Ôò¶ÔÈÎÒân¡Ý2ÓÐ
£¨c
n+1+¦Ëc
n£©
2=£¨c
n+2+¦Ëc
n+1£©£¨c
n+¦Ëc
n-1£©£¬½«c
n=2
n+3
n´úÈëÉÏʽ£¬µÃ£º
[2
n+1+3
n+1+¦Ë£¨2
n+3
n£©]
2=[2
n+2+3
n+2+¦Ë£¨2
n+1+3
n+1£©]•[2
n+3
n+¦Ë£¨2
n-1+3
n-1£©]£¬
¼´[£¨2+¦Ë£©2
n+£¨3+¦Ë£©3
n]
2=[£¨2+¦Ë£©2
n+1+£¨3+¦Ë£©3
n+1][£¨2+¦Ë£©2
n-1+£¨3+¦Ë£©3
n-1]£¬
ÕûÀíµÃ
£¨2+¦Ë£©£¨3+¦Ë£©•2
n•3
n=0£¬½âµÃ¦Ë=-2»ò¦Ë=-3£®
¹Ê´æÔÚʵÊýʵÊý¦Ë=-2»ò-3£¬Ê¹Ê¹ÊýÁÐc
n+1+¦Ëc
nÊǵȱÈÊýÁУ®
£¨¢ó£©ÊýÁÐ{c
n}²»¿ÉÄÜΪµÈ±ÈÊýÁУ®
ÀíÓÉÈçÏ£ºÉèµÈ±ÈÊýÁÐ{b
n}µÄ¹«±È·Ö±ðΪp£¬ÔòÓÉÌâÉèÖªp¡Ùq£¬Ôòc
n=q
n+b
1p
n-1Ϊ֤{c
n}²»ÊǵȱÈÊýÁÐÖ»ÐèÖ¤c
22¡Ùc
1•c
3£®
ÊÂʵÉÏ£¬c
22=£¨q
2+b
1p£©
2=q
4+2q
2b
1p+b
12p
2£¬¢Ù
c
1•c
3=£¨q+b
1£©£¨q
3+b
1p
2£©=q
4+b
12p
2+b
1q£¨p
2+q
2£©£¬£®¢Ú
¢Ú-¢ÙµÃ
c
1c
3-c
22=b
1q£¨p
2+q
2-2pq£©
ÓÉÓÚp¡Ùqʱ£¬p
2+q
2£¾2pq£¬ÓÖq¼°µÈ±ÈÊýÁеÄÊ×Ïîb
1¾ù²»ÎªÁ㣬
ËùÒÔc
1c
3-c
22¡Ù0£¬¼´c
22¡Ùc
1•c
3£®¹Ê{c
n}²»ÊǵȱÈÊýÁУ®
·ÖÎö£º£¨I£©ÀûÓÃÊýÁеÄÏîÓëÇ°nÏîºÍµÄ¹Øϵ½«ÏîÓëºÍµÄ¹Øϵת»¯ÎªÏîµÄµÝÍƹØϵ£¬¾ÝµÈ±ÈÊýÁеĶ¨ÒåÅжϳöÊǵȱÈÊýÁУ¬Çó³öͨÏ
£¨II£©¾ÝµÈ±ÈÊýÁеȼÛÓÚ´ÓµÚ¶þÏîÆð£¬Ã¿Ò»ÏΪǰºóÁ½ÏîµÄµÈ±ÈÖÐÏÁгöµÈʽ£¬Çó³ö¦ËµÄÖµ£®
£¨III£©Çó³öÇ°ÈýÏͨ¹ýÇ°ÈýÏî²»ÄܳɵȱÈÊýÁУ¬Ö¤µÃÊýÁв»ÄܳɵȱÈÊýÁУ®
µãÆÀ£ºÀûÓÃS
nÇóa
nʱ£¬×¢ÒâÒª·Ön¡Ý2ºÍn=1Á½¶ÎÇó£¬ÔÚÅжÏÇó³öµÄÁ½¶ÎÊÇ·ñÄܺϳÉÒ»¶Î£»Ö¤Ã÷ÊýÁÐÊǵȱÈÊýÁÐÓëÖ¤Ã÷Ò»¸öÊýÁв»ÊǵȱÈÊýÁеÄÇø±ð£ºÈôÊÇ£¬ÐèÖ¤µÃÈÎÒâÈýÏî³ÉµÈ±ÈÊýÁУ¬Èô²»ÊÇ£¬Ö»ÐèÖ¤µÄÇ°ÈýÏî²»ÊǵȱÈÊýÁм´¿É£®