精英家教网 > 高中数学 > 题目详情
8.△ABC的两边长为2,3,其夹角的余弦为$\frac{1}{3}$,则其外接圆半径为(  )
A.$\frac{{9\sqrt{2}}}{2}$B.$\frac{{9\sqrt{2}}}{4}$C.$\frac{{9\sqrt{2}}}{8}$D.$\frac{{2\sqrt{2}}}{9}$

分析 由余弦定理求出第三边c,再由正弦定理求出三角形外接圆的半径.

解答 解:△ABC中,a=2,b=3,且cosC=$\frac{1}{3}$,
由余弦定理可知
c2=a2+b2-2abcosC=22+32-2×2×3×$\frac{1}{3}$=9,
∴c=3;
又sinC=$\sqrt{1{-(\frac{1}{3})}^{2}}$=$\frac{2\sqrt{2}}{3}$,
∴由正弦定理可知外接圆半径为
R=$\frac{1}{2}$×$\frac{c}{sinC}$=$\frac{1}{2}$×$\frac{3}{\frac{2\sqrt{2}}{3}}$=$\frac{9\sqrt{2}}{8}$.
故选:C.

点评 本题主要考查了正弦定理和余弦定理的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\sqrt{1-x}$+$\sqrt{x+3}$的最大值为M,最小值为m,则$\frac{m}{M}$的值为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{5}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=$\left\{\begin{array}{l}{x-2m,x≥m}\\{-x,-m<x<m}\\{x+2m,x≤-m}\end{array}\right.$,其中m>0,若对任意实数x,都有f(x)<f(x+1)成立,则实数m的取值范围为(0,$\frac{1}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设全集U={1,2,3,4,5},集合A={1,2},B={x|x2-5x+6=0},则A∩(∁UB)=(  )
A.{4,5}B.{2,3}C.{1}D.{4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知四边形ABCD为直角梯形,∠BCD=90°,AB∥CD,且AD=3,BC=2CD=4,点E,F分别在线段AD和BC上,使FECD为正方形,将四边形ABFE沿EF翻折至使二面角B-EF-C的所成角为60°
(Ⅰ)求证:CE∥面A′DB′
(Ⅱ)求直线A′B′与平面FECD所成角的正弦值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知a>b,c>d,且c,d不为零,那么(  )
A.ad>bcB.ac>bdC.a-c>b-dD.a-d>b-c

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列函数中,最小值为4的是(  )
A.y=$\frac{lgx}{2}+\frac{8}{lgx}$B.y=$2\sqrt{{x^2}+2}+\frac{2}{{\sqrt{{x^2}+2}}}$
C.$y=sinx+\frac{4}{sinx}$(0<x<π)D.y=ex+4e-x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知某三棱锥的三视图(单位:cm)如图所示,则此三棱锥的体积是2cm3,表面积是5+3$\sqrt{2}$+$\sqrt{13}$cm2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,点E是正方形ABCD的边CD的中点,若$\overrightarrow{AE}$•$\overrightarrow{DB}$=-2,则$\overrightarrow{AE}$•$\overrightarrow{BE}$的值为3

查看答案和解析>>

同步练习册答案