精英家教网 > 高中数学 > 题目详情
已知奇函数f(x)是定义在(-2,2)上的减函数,若f(m-1)+f(2m-1)>0,则实数m的取值范围是
 
分析:由已知中奇函数f(x)是定义在(-2,2)上的减函数,我们可以将不等式f(m-1)+f(2m-1)>0,转化为一个关于m的不等式组,解不等式组,即可得到实数m的取值范围.
解答:解:∵奇函数f(x)是定义在(-2,2)上的减函数,
∴不等式f(m-1)+f(2m-1)>0可转化为:
-2<m-1<2
-2<2m-1<2
m-1<1-2m

解得:-
1
2
<m<
2
3

故答案为:(-
1
2
2
3
)
点评:本题考查的知识点是奇偶性与单调性的综合应用,其中根据函数的性质将不等式转化为关于m的一次不等式组,是解答的关键,但本题易忽略定义域,而错角为(-∞,
2
3
).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知奇函数f(x)是定义在(-1,1)上的增函数,如果f(1-a)+f(1-a2)<0,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

15、已知奇函数f(x)是定义在R上的增函数,数列xn是一个公差为2的等差数列,满足f(x8)+f(x9)+f(x10)+f(x11)=0,则x2011的值等于
4003

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)是定义在[-1,1]上的增函数,则不等式f(x-1)+f(1-x2)<0的解集为
(1,
2
]
(1,
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)是定义在[-1,1]上的增函数,且f(x-1)+f(3x-2)<0,则x的取值范围为
1
3
≤x<
3
4
1
3
≤x<
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知奇函数f(x)是定义在R上的增函数,且f(x-1)+f(3x-1)<0,则x的取值范围为
x<
1
2
x<
1
2

查看答案和解析>>

同步练习册答案