精英家教网 > 高中数学 > 题目详情

已知数列的前项和为
(1)若数列是首项与公差均为的等差数列,求
(2)若且数列均是公比为的等比数列,
求证:对任意正整数

(1)0 (2)证明详见解析.

解析试题分析:(1)根据等差数列的通项公式和前n项和公式,求出an,Sn,然后代入f(n)中,整理即可求解.
(2)根据等比数列的通项公式求出的表达式,可得,再求出,代入f(n)中,整理得,然后证0即可.
试题解析:(1)  数列是首项与公差均为的等差数列,              1分
              3分


                  5分
                             6分
(2)由题意                   7分
                    8分
                        9分

             10分
(证法一)当时,;                               11分
时,,              12分
          13分
故对任意正整数                         14分
(证法二)


                 11分


数列是递增数列.                               12分
                        13分
                            14分
考点:1. 等差数列、等比数列的通项公式和前n项和公式;(2)不等式的证明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知等差数列的前项和为.
(1)请写出数列的前项和公式,并推导其公式;
(2)若,数列的前项和为,求的和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设各项均为正数的数列的前项和为,满足恰好是等比数列的前三项.
(Ⅰ)求数列的通项公式;
(Ⅱ)记数列的前项和为,若对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知集合,对于数列.
(Ⅰ)若三项数列满足,则这样的数列有多少个?
(Ⅱ)若各项非零数列和新数列满足首项),且末项,记数列的前项和为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列,满足
(1)已知,求数列所满足的通项公式;
(2)求数列 的通项公式;
(3)己知,设,常数,若数列是等差数列,记,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{an}是首项为-1,公差d 0的等差数列,且它的第2、3、6项依次构成等比数列{bn}的前3项。
(1)求{an}的通项公式;
(2)若Cn=an·bn,求数列{Cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

是数列的前项和,对任意都有成立, (其中是常数).
(1)当时,求
(2)当时,
①若,求数列的通项公式;
②设数列中任意(不同)两项之和仍是该数列中的一项,则称该数列是“数列”.
如果,试问:是否存在数列为“数列”,使得对任意,都有
,且.若存在,求数列的首项的所
有取值构成的集合;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列是等差数列,.
(Ⅰ)求数列的通项公式;
(Ⅱ)若,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列中,且点在直线上。
(1)求数列的通项公式;
(2)若函数求函数的最小值;
(3)设表示数列的前项和.试问:是否存在关于的整式,使得
对于一切不小于2的自然数恒成立?若存在,写出的解析式,并加以证明;若不存在,试说明理由。

查看答案和解析>>

同步练习册答案