精英家教网 > 高中数学 > 题目详情

【题目】辽宁省六校协作体(葫芦岛第一高中、东港二中、凤城一中、北镇高中、瓦房店高中、丹东四中)中的某校文科实验班的名学生期中考试的语文、数学成绩都不低于分,其中语文成绩的频率分布直方图如图所示,成绩分组区间是:

1)根据频率分布直方图,估计这名学生语文成绩的中位数和平均数;(同一组数据用该区间的中点值作代表;中位数精确到

2)若这名学生语文成绩某些分数段的人数与数学成绩相应分数段的人数之比如下表所示:

分组区间

从数学成绩在的学生中随机选取人,求选出的人中恰好有人数学成绩在的概率.

【答案】1)中位数是;平均数是;(2.

【解析】

1)利用中位数左边矩形面积之和为可求出中位数,将每个矩形底边中点值乘以相应矩形的面积,再相加可得出这名学生语文成绩的平均数;

2)计算出数学成绩在的学生人数,列举出所有的基本事件,然后利用古典概型的概率公式可计算出所求事件的概率.

1

名学生语文成绩的中位数是.

名学生语文成绩的平均数是:

2数学成绩在之内的人数为

数学成绩在的人数为人,设为

而数学成绩在的人数为人,设为

从数学成绩在的学生中随机选取人基本事件为:,共个,

选出的人中恰好有人数学成绩在的基本事件为:

,共个,

选出的人中恰好有人数学成绩在的概率是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线的准线与半椭圆相交于两点,且.

(Ⅰ)求抛物线的方程;

(Ⅱ)若点是半椭圆上一动点,过点作抛物线的两条切线,切点分别为,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新型冠状病毒(SARS-COV-2)是2019年在人体中发现的冠状病毒新毒株,主要通过呼吸道飞沫进行传播,鉴于其特殊的传播途径,某科学医疗机构发现一次性医用口罩起着一定的防护作用一般,口罩在投入市场前需做一系列的检测,其中罩体污点、鼻梁条缺陷、耳绳异常等常规瑕疵肉眼可见,而耳绳尤为关键,会出现耳绳缺失、错位、错熔、漏熔四种情况 .现在生产商大多采用全自动生产线生产口罩,某工厂现有甲(1台本体机拖2台耳带机)和乙(1台本体机拖3台耳带机)两条生产线,已知甲生产线的日产量为7万只,乙生产线的日产量为10万只,生产商为了了解是否有必要更换原有的甲生产线,在设备生产状况相同,不计其他影响的状态下,分别统计了两条生产线生产的1000只口罩的耳绳情况,得到的统计数据如下:

耳绳情况

合格

缺失

错位

错熔

漏熔

甲生产线

950

9

19

11

11

乙生产线

900

19

35

25

21

1)从乙生产线生产的1000只口罩中随机抽取3只,将合格品的只数记为,求的分布列和数学期望;

2)假设口罩的生产成本为0.4/只,若耳绳发生缺陷时可通过人工修复至合格来挽回损失。耳绳缺失、漏熔时人工修复费为0.01/只;错位与错熔时需更换耳绳,其中耳绳成本为0.06/根,人工修复费为0.02/只.

①以修复费的平均数作为判断依据,判断哪一条生产线在每日生产过程中挽回损失时所需费用较少?

②若经一次检验就合格的口罩,生产商以1/只的批发价销售给市场,经人工修复的打八折出售。以该工厂的日平均收入为依据分析该生产商是否有必要更换甲生产线?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,动圆C与圆都相切,则动圆C的圆心轨迹E的方程为________________;斜率为的直线l与曲线E仅有三个公共点,依次为PQR,则的值为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥的底面是矩形,平面平面,且,点中点.

1)证明:平面平面

2)直线和平面所成的角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数在区间上恰好有一个零点,则的最小值为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥PABCD中,AB=AD=2BC=2BCADABAD,△PBD为正三角形.且PA=2

1)证明:平面PAB⊥平面PBC

2)若点P到底面ABCD的距离为2E是线段PD上一点,且PB∥平面ACE,求四面体A-CDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高中数学建模兴趣小组的同学为了研究所在地区男高中生的身高与体重的关系,从若干个高中男学生中抽取了1000个样本,得到如下数据.

数据一:身高在(单位:)的体重频数统计

体重

人数

20

60

100

100

80

20

10

10

数据二:身高所在的区间含样本的个数及部分数据

身高

平均体重

45

53.6

60

75

1)依据数据一将上面男高中生身高在(单位:)体重的频率分布直方图补充完整,并利用频率分布直方图估计身高在(单位:)的中学生的平均体重;(保留小数点后一位)

2)依据数据一、二,计算身高(取值为区间中点)和体重的相关系数约为0.99,能否用线性回归直线来刻画中学生身高与体重的相关关系,请说明理由;若能,求出该回归直线方程;

3)说明残差平方和或相关指数与线性回归模型拟合效果之间关系.(只需写出结论,不需要计算)

参考公式:.

参考数据:(1;(2;(3;(4.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,四点中恰有三点在椭圆上,抛物线焦点到准线的距离为.

1)求椭圆、抛物线的方程;

2)过椭圆右顶点Q的直线与抛物线交于点AB,射线分别交椭圆于点.

i)证明:为定值;

ii)求的面积的最小值.

查看答案和解析>>

同步练习册答案