精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆与抛物线共焦点,抛物线上的点My轴的距离等于,且椭圆与抛物线的交点Q满足

(I)求抛物线的方程和椭圆的方程;

(II)过抛物线上的点作抛物线的切线交椭圆于 两点,设线段AB的中点为,求的取值范围.

【答案】(1);(2)

【解析】试题分析:1将抛物线上的点轴的距离等于和抛物线的定义相结合,可得,可得抛物线的方程,已知在椭圆中的值,由可得点Q的坐标,结合椭圆的定义可得椭圆的方程;2联立直线与抛物线的方程,结合其有一个交点可得关系式联立直线与椭圆的方程根据椭圆与直线有2个交点即,得到关于不等式,解不等式可得的取值范围,由中点坐标公式及韦达定理可得,从而可得其范围.

试题解析:1∵抛物线上的点轴的距离等于

∴点M到直线的距离等于点到焦点的距离,

是抛物线的准线,即

解得,∴抛物线的方程为

可知椭圆的右焦点,左焦点

,又,解得

由椭圆的定义得

,又,得

椭圆的方程为

2显然

,消去,得

由题意知,得

,消去,得

其中

化简得

,得,解得

,则<0

,得的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】潍坊文化艺术中心的观光塔是潍坊市的标志性建筑,某班同学准备测量观光塔的高度单位:米),如图所示,垂直放置的标杆的高度米,已知 .

1)该班同学测得一组数据: 请据此算出的值;

2该班同学分析若干测得的数据后,发现适当调整标杆到观光塔的距离单位:米),使的差较大,可以提高测量精确度,若观光塔高度为136米,问为多大时, 的值最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.
(1)求实数k的值;
(2)设g(x)=log4(a2x+a),若f(x)=g(x)有且只有一个实数解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD是平行四边形,平面AED平面ABCD,EFAB,AB=2,BC=EF=1,AE=,DE=3,BAD=60,G为BC的中点.

(1)求证:FG平面BED;

(2)求证:平面BED平面AED;

(3)求直线EF与平面BED所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)在[0,+∞)上递增,=0,已知g(x)=﹣f(|x|),满足的x的取值范围是(  )
A.(0,+∞)
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 处取得极值,且,曲线处的切线与直线垂直.

(Ⅰ)求的解析式;

(Ⅱ)证明关于的方程至多只有两个实数根(其中的导函数, 是自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=4x﹣2x+1+3,当x∈[﹣2,1]时,f(x)的最大值为m,最小值为n,
(1)若角α的终边经过点P(m,n),求sinα+cosα的值;
(2)g(x)=mcos(nx+)+n,求g(x)的最大值及自变量x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是一个等差数列且a2+a8=﹣4a6=2

1)求{an}的通项公式;

2)求{an}的前n项和Sn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fk(x)=xk+bx+c(k∈N* , b,c∈R),g(x)=logax(a>0,a≠1).
(1)若b+c=1,且fk(1)=g( ),求a的值;
(2)若k=2,记函数fk(x)在[﹣1,1]上的最大值为M,最小值为m,求M﹣m≤4时的b的取值范围;
(3)判断是否存在大于1的实数a,使得对任意x1∈[a,2a],都有x2∈[a,a2]满足等式:g(x1)+g(x2)=p,且满足该等式的常数p的取值唯一?若存在,求出所有符合条件的a的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案