精英家教网 > 高中数学 > 题目详情
10.等差数列{an}满足a1+a9=8,则a4+a5+a6=(  )
A.16B.14C.12D.10

分析 根据题意,由等差数列的性质可得a1+a9=2a5=8,即a5=4,a4+a6=a1+a9=8,将其相加即可得a4+a5+a6的值,即可得答案.

解答 解:根据题意,{an}是等差数列,且a1+a9=8,
则有a1+a9=2a5=8,即a5=4,
a4+a6=a1+a9=8,
故有a4+a5+a6=4+8=12;
故选:C.

点评 本题考查等差数列的性质,注意灵活运用等差数列相关的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.若数列的通项公式是an=3-2n,则a2n=3-4n,$\frac{{a}_{2}}{{a}_{3}}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.为了宣传2015年10月在贵阳举行的“世界众筹大会”,“世界众筹大会”筹委会举办了“大众创业、万众创新”知识有奖问答活动,随机对市民15~65岁的人群抽样n人,回答问题统计结果如图所示:
组号 分组回答正确的人数 回答正确的人数占本组的频率  频率分布直方图
 第1组[15,25) 5 0.5 
 第2组[25,35) a 0.9
 第3组[35,45) 27 x
 第4组[45,55) 9 0.36
 第5组[55,65] 3 0.2
(1)分别求出a,x的值;
(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,“世界众筹大会”筹委会决定给所抽取的6人颁发幸运奖,各组抽取的人数分别是多少?
(3)请根据频率分布直方图,估计样本数据的众数和中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.计算:sin75°cos15°-cos75°sin15°=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若点A(2,-4),点B(-2,-5),则向量$\overrightarrow{AB}$的坐标为(  )
A.(-4,-1)B.(4,1)C.(0,-9)D.(-2,-5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知i是虚数单位,集合A={z|z=in,n∈N*},则A的子集个数有(  )
A.4B.8C.16D.32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知曲线C1的参数方程是$\left\{\begin{array}{l}{x=5cosφ}\\{y=\frac{5\sqrt{22}}{22}sinφ}\end{array}\right.$(φ为参数),以坐标原点为极点,x轴正半轴为极轴建立坐标系,曲线C2的极坐标方程是ρsin($θ-\frac{π}{6}$)=0,且曲线C1与曲线C2在第一象限的交点为A,长方形ABCD的顶点都在C1上(其中A、B、C、D依次逆时针次序排列)求A、B、C、D的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.已知曲线C1:$\left\{\begin{array}{l}{x=-2+cosα}\\{y=3+sinα}\end{array}\right.$(α为参数),C2:$\left\{\begin{array}{l}{x=8cosθ}\\{y=2\sqrt{3}sinθ}\end{array}\right.$(θ为参数).
(1)将C1,C2的方程化为普通方程,并说明它们分别表示什么曲线;
(2)若C1上的点P对应的参数为α=$\frac{π}{2}$,Q为C2上的动点,求PQ中点M到直线l:ρcos(θ-$\frac{π}{3}$)=$\sqrt{3}$的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=x+$\frac{a}{x}$(a>0)在(0,3]上单调递减,则实数a的取值范围是[9,+∞).

查看答案和解析>>

同步练习册答案