精英家教网 > 高中数学 > 题目详情

【题目】已知函数有两个零点.

1)求的取值范围;

2)设的两个零点,证明:

【答案】1的取值范围为;(2)证明见详解.

【解析】

1)求出,然后分四种情况讨论,每种情况下求出的单调性,再结合函数值的符号即可得到答案;

2)借助(1)的结论来证明,由单调性可知等价于,即.设,则.则当时,,而,故当时,.从而,故

1

①当时,则只有一个零点.

②当时,则当时,;当时,

所以单调递减,在单调递增.

,取满足

存在两个零点.

③当时,由

,则,故当时,,因此单调递增.

又当,所以不存在两个零点.

,则,故当时,;当时,

因此单调递减,在单调递增.

又当时,,所以不存在两个零点.

综上,的取值范围为

2)不妨设,由(1)知

单调递减,所以要证,即证,即证

由于,而

所以

,则

所以当时,,而,故当时,

从而,故

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】()(),设.

1)求函数[0π]上的单调减区间;

2)在△ABC中,角ABC所对的边分别为abc,若,求sinB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知在算法中分别表示取商和取余数.为了验证三位数卡普雷卡尔数字黑洞(即输入一个无重复数字的三位数,经过如图的有限次的重排求差计算,结果都为495.小明输入,则输出的

A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的焦距为,且过点

1)求C的方程;

2)若直线lC有且只有一个公共点,l与圆x2+y26交于AB两点,直线OAOB的斜率分别记为k1k2.试判断k1k2是否为定值,若是,求出该定值;否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“割圆术”是刘徽最突出的数学成就之一,他在《九章算术注》中提出割圆术,并作为计算圆的周长,面积已经圆周率的基础,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.1415和3.1416这两个近似数值,这个结果是当时世界上圆周率计算的最精确数据.如图,当分割到圆内接正六边形时,某同学利用计算机随机模拟法向圆内随机投掷点,计算得出该点落在正六边形内的频率为0.8269,那么通过该实验计算出来的圆周率近似值为(参考数据:

A. 3.1419B. 3.1417C. 3.1415D. 3.1413

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,PA⊥底面ABCDADBCABACAD3PABC4.

1)求异面直线PBCD所成角的余弦值;

2)求平面PAD与平面PBC所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)时,设的两个极值点为,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的有( )

①用相关指数来刻画回归效果,越小,说明模型的拟合效果越好;

②若一组数据812x119的平均数是10,则其方差是2

③回归直线一定过样本点的中心();

④若相关系数,则两个变量之间线性关系性强.

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 已知函数f(x)=|xa|+|x-2|.

(1)a=-3时,求不等式f(x)≥3的解集;

(2)f(x)≤|x-4|的解集包含[1,2],求a的取值范围.

查看答案和解析>>

同步练习册答案