精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)=ln$\frac{ex}{e-x},若f(\frac{e}{2013})+f(\frac{2e}{2013})+…+f(\frac{2012e}{2013})=503(a+b),则{a^2}+{b^2}$的最小值为8.

分析 求出f(x)+f(e-x)的值,然后利用已知条件列出关系式,通过基本不等式求出表达式的最小值.

解答 解:函数f(x)=ln$\frac{ex}{e-x}$,
f(x)+f(e-x)=$ln\frac{ex}{e-x}+ln\frac{e(e-x)}{e-(e-x)}$=$ln\frac{ex}{e-x}+ln\frac{e(e-x)}{x}$=1+1+$ln\frac{x}{e-x}+ln\frac{e-x}{x}$=2.$f(\frac{e}{2013})+f(\frac{2e}{2013})+…+f(\frac{2012e}{2013})=503(a+b)$,
即:2012=503(a+b),
可得a+b=4.
∵a2+b2≥$\frac{(a+b)^{2}}{2}$=8.
当且仅当a=b=2时取等号.
a2+b2的最小值为:8.
故答案为:8.

点评 本题考查基本不等式求解表达式的最值,函数值的求法,推出f(x)+f(e-x)=2是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.若x,y满足约束条件$\left\{\begin{array}{l}{x+y≤4}\\{y-x≤2}\\{x≥1}\\{y≥0}\end{array}\right.$,则$\frac{x+y}{x-1}$的最小值为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在-360°~0°范围内与角1250°终边相同的角是(  )
A.-210°B.-150°C.-190°D.-170°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在极坐标系中,求圆ρ=4sinθ的圆心到直线θ=$\frac{π}{4}$(ρ∈R)的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若P(m,n)为椭圆$\left\{\begin{array}{l}x=\sqrt{3}cosθ\\ y=sinθ\end{array}$(θ为参数)上的点,则m+n的取值范围是[-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如果一扇形的圆心角为120°,半径等于10cm,则扇形的面积为(  )
A.$\frac{100}{3}c{m^2}$B.$\frac{100}{3}πc{m^2}$C.6000cm2D.$\frac{200}{3}πc{m^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.从某校2100名学生随机抽取一个30名学生的样本,样本中每个学生用于课外作业的时间(单位:min)依次为:75,80,85,65,95,100,70,55,65,75,85,110,120,80,85,80,75,90,90,95,70,60,60,75,90,95,65,75,80,80.该校的学生中作业时间超过一个半小时(含一个半小时)的频率是0.3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在等差数列{an}中,a1=1,a4=49,前n项和Sn=100,则公差d和项数n为(  )
A.d=12,n=4B.d=-18,n=2C.d=16,n=3D.d=16,n=4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知f(x)=ax5+bx3+$\frac{c}{x}$-8,且f(2)=5,则f(-2)的值为(  )
A.-5B.21C.13D.-21

查看答案和解析>>

同步练习册答案