精英家教网 > 高中数学 > 题目详情
2.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(x,-2),且$\overrightarrow{a}$+$\overrightarrow{b}$与2$\overrightarrow{a}$-$\overrightarrow{b}$平行,则实数x的值等于(  )
A.-4B.4C.-6D.6

分析 利用向量共线定理的坐标运算性质即可得出.

解答 解:$\overrightarrow{a}$+$\overrightarrow{b}$=(2+x,-1),
2$\overrightarrow{a}$-$\overrightarrow{b}$=(4-x,4),
∵$\overrightarrow{a}$+$\overrightarrow{b}$与2$\overrightarrow{a}$-$\overrightarrow{b}$平行,
∴4(2+x)+(4-x)=0,
解得x=-4.
故选:A.

点评 本题考查了向量共线定理的坐标运算性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=-x3-x+sinx,不等式f(m+sinθ)+f(cos2θ)>0对任意θ∈(0,$\frac{π}{2}$)都成立,则实数m的取值范围(-∞,-$\frac{25}{12}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知F1,F2分别是双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦点,O为坐标原点,P为双曲线右支上的一点,PF1与以F2为圆心,|OF2|为半径的圆相切于点Q,且Q恰好是PF1的中点,则双曲线C的离心率为(  )
A.$\frac{{\sqrt{3}+1}}{2}$B.$\sqrt{3}+1$C.$\frac{{\sqrt{6}}}{2}$D.$\sqrt{5}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}{2+|x-2|,}&{x≥0}\\{{x}^{2}}&{x<0}\end{array}\right.$,当函数g(x)=k-f(x)有三个零点时,实数k的取值范围是(  )
A.<k<2B.k≥2C.2<k≤4D.2≤k≤4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,四棱锥P-ABCD中,侧面PAD⊥底面ABCD,其中,四边形ABCD为正方形,△PAD是正三角形,M是PD的中点.
(1)求证:AM⊥平面PCD;
(2)设二面角P-BC-A的大小为θ,求cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.幂函数f(x)=k•xα的图象过点$(\frac{1}{3},\frac{{\sqrt{3}}}{3})$,则k+α=(  )
A.$\frac{1}{3}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知a,b∈R+,函数f(x)=alog2x+b的图象经过点(4,1),则$\frac{1}{a}$+$\frac{2}{b}$的最小值为(  )
A.6-2$\sqrt{2}$B.6C.4+2$\sqrt{2}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列函数y=x${\;}^{\frac{1}{5}}$,y=x${\;}^{\frac{1}{4}}$,y=x${\;}^{-\frac{2}{3}}$,y=x${\;}^{-\frac{1}{2}}$中,定义域为{x∈R|x>0}的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设集合A={2,3},B={2,3,4},C={3,4,5}则(A∩B)∪C=(  )
A.{2,3,4}B.{2,3,5}C.{3,4,5}D.{2,3,4,5}

查看答案和解析>>

同步练习册答案