精英家教网 > 高中数学 > 题目详情
13.在△ABC中,若sinA=$\frac{1}{3}$,A+B=30°,BC=4,则AB=(  )
A.24B.6$\sqrt{3}$C.2$\sqrt{3}$D.6

分析 先求出sinC=sin150°=$\frac{1}{2}$,再根据正弦定理有:$\frac{BC}{AB}=\frac{sinA}{sinC}$=$\frac{2}{3}$,即可求出AB.

解答 解:∵A+B=30°,∴∴C=180°-(A+B)=150°,
∴sinC=sin150°=$\frac{1}{2}$.
根据正弦定理有:$\frac{BC}{AB}=\frac{sinA}{sinC}$=$\frac{2}{3}$,
∴∴AB=BC×$\frac{3}{2}$=4×$\frac{3}{2}$=6.
故选:D.

点评 本题考查正弦定理,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.在数列{an}中,a1=5且an=2an-1+2n-1(n≥2且n∈N*),求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若x2+y2-2x-3=0,则$\frac{y-2}{x}$的取值范围是[0,$\frac{4}{3}$],2x2+y2的取值范围是[$\frac{5}{3}$,7].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在数列{an}中,已知a1=1,an+1=$\frac{{a}_{n}}{m•{a}_{n}+1}$(m是常数,n∈N*),a1,a2,a5成公比不等于1的等比数列.
(1)求证:数列{$\frac{1}{{a}_{n}}$}是等差数列;
(2)求数列{an}的通项公式;
(3)设bn=an•an+1,数列{bn}前n项和为Sn,求证:Sn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,D是BC上一点,且B=30°,AD=5,CD=3,AC=7,求AB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.当k为什么实数时,方程组$\left\{\begin{array}{l}{4x+3y=60}\\{kx+(k+2)y=60}\end{array}\right.$的解满足x>y>0的条件?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在数列{an}中a1=1,an+1=an+(-$\frac{1}{2}$)n+1,求an的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知Sn是数列{an}的前n项和,a1=1,an+1=$\frac{n+2}{n}$Sn(n∈N*).
(1)求证:数列{$\frac{{a}_{n}}{n+1}$}是等比数列;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知直线l与曲线f(x)=x2-3x+2+2lnx相切,则直线l倾斜角的最小值为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

同步练习册答案