精英家教网 > 高中数学 > 题目详情

【题目】为调查了解某高等院校毕业生参加工作后,从事对工作与大学所学专业是否专业对口,该校随机调查了80位该校2015年毕业的大学生,得到具体数据如下表:

(1)能否在犯错误的概率不超过的前提下,认为“毕业生从事的工作与大学所学专业对口与性别有关?”

参考公式:

附表:

(2)求这80位毕业生从事的工作与大学所学专业对口的概率,并估计该校近3年毕业的2000名大学生总从事的工作与大学所学专业对口的人数;

(3)若从工作与所学专业不对口的15人中选出男生甲、乙,女生对丙、丁,让他们两两进行一次10分钟的职业交流,该校宣传部对每次交流都一一进行视频记录,然后随机选取一次交流视频上传到学校的网站,试求选取的视频恰为异性交流视频的概率.

【答案】1)不能;(2;(3.

【解析】

(1)根据列联表中的数据,得到的观测值为

故不能在犯错误的概率不超过的前提下,认为“毕业生从事的工作与大学所学专业对口与性别有关”. 5分

(2)这80为毕业生从事的工作与大学所学专业的概率为, 6分

由此估计该校近年毕业的大学生中从事的工作与大学所学专业对口的人数为

, 7分

(3)两两进行一次分钟的职业交流的所有结果为

(甲,乙),(甲,丙),(甲,丁),(乙,丙),(乙,丁),(丙,丁)共有个基本事件, 10分

其中异性交流的有个基本事件,故所有概率为. 12分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线为参数).以原点为极点,轴的正半轴为极轴建立极坐标系,曲线.

(1)求的普通方程和的直角坐标方程;

(2)若曲线交于两点,的中点为,点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知多面体均垂直于平面ABC,.

(Ⅰ)证明:平面;

(Ⅱ)求直线与平面所成的角的余弦值;

(Ⅲ)求平面与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱中,,且.

I)求证:

II)求证:

III)若,判断直线与平面是否垂直?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的中心在原点,焦点在轴上,离心率,它的一个顶点恰好是抛物线的焦点.

1)求椭圆的标准方程;

2)过坐标原点的直线交椭圆于两点,在第一象限,轴,垂足为,连接延长交椭圆于点.

①求证:

②求面积最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年时红军长征胜利80周年,某市电视台举办纪念红军长征胜利80周年知识问答,宣传长征精神.首先在甲、乙、丙、丁四个不同的公园进行支持签名活动.

公园

获得签名人数

45

60

30

15

然后在各公园签名的人中按分层抽样的方式抽取10名幸运之星回答问题,从10个关于长征的问题中随机抽取4个问题让幸运之星回答,全部答对的幸运之星获得一份纪念品.

(Ⅰ)求此活动中各公园幸运之星的人数;

(Ⅱ)若乙公园中每位幸运之星对每个问题答对的概率均为,求恰好2位幸运之星获得纪念品的概率;

(Ⅲ)若幸运之星小李对其中8个问题能答对,而另外2个问题答不对,记小李答对的问题数为,求的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有下列四个命题:

,则xy互为相反数的逆命题;

全等三角形的面积相等的否命题;

,则有实根的逆否命题;

直角三角形有两个角是锐角的逆命题;

其中真命题为(

A.①②B.②③C.①③D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中, 平面 分别为 的中点.

(1)求证: 平面

(2)若平面平面,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为矩形,平面平面.已知.

1)证明:平面

2)证明:

3)求二面角的余弦值.

查看答案和解析>>

同步练习册答案