精英家教网 > 高中数学 > 题目详情
1.若lg25+lg2lg50的值为1.

分析 利用对数的运算法则及其lg5+lg2=1.

解答 解:原式=lg25+lg2(lg5+1)
=lg5(lg5+lg2)+lg2
=lg5+lg2
=1.
故答案为:1.

点评 本题考查了对数函数的运算法则,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.四棱锥P-ABCD的底面为矩形,且PA⊥平面ABCD,AB=AD=$\frac{1}{2}$AP=2,E为侧棱PC的中点,则异面直线AE与PD所成角的余弦值为(  )
A.$\frac{{\sqrt{30}}}{10}$B.$-\frac{{\sqrt{30}}}{10}$C.$\frac{{\sqrt{30}}}{5}$D.$-\frac{{\sqrt{30}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.当x∈[2,3]时,x2+ax+a+1<0恒成立,则a的范围是(-∞,-$\frac{5}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知集合A是同时满足下列两个性质的函数f(x)的全体.
①函数f(x)在其定义域上是单调函数;
②f(x)的定义域内存在区间[a,b],使得f(x)在[a,b]上的值域为[$\frac{a}{2},\frac{b}{2}$].
(1)判断f(x)=x3是否属于M,若是,求出所有满足②的区间[a,b],若不是,说明理由;
(2)若是否存在实数t,使得h(x)=$\sqrt{x-1}+t∈M$,若存在,求实数t的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设f(x)是定义在R上的偶函数,f(x)=-f(x+1),当x∈[0,1]时,f(x)=x+2,则当x∈[-2,0]时,f(x)=(  )
A.f(x)=x+4B.f(x)=2+|x+1|C.f(x)=2-xD.f(x)=3-|x+1|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=a•2x-2-x定义域为R的奇函数.
(1)求实数a的值;
(2)判断函数f(x)在R上的单调性,并利用函数单调性的定义证明;
(3)若不等式f(9x+1)+f(t-2•3x+5)>0在在R上恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.经过原点并且与直线x+y-2=0相切于点(2,0)的圆的标准方程是(x-1)2+(y+1)2=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)=(m2-m-1)x-5m-1是幂函数,且在区间(0,+∞)上单调递增.
(Ⅰ)求m的值;
(Ⅱ)解不等式f(x-2)>16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=x+ax2+blnx,曲线y=f(x)过P(1,0),且在P处的切线斜率为2.
(1)求a,b的值;
(2)证明:f(x)≤2x-2.

查看答案和解析>>

同步练习册答案