精英家教网 > 高中数学 > 题目详情

【题目】随机变量ξ的分布列如表,其中a,b,c成等差数列.若E(ξ)= ,则D(ξ)=(

ξ

1

2

3

P

a

b

c


A.
B.
C.
D.

【答案】D
【解析】解:∵a,b,c成等差数列,E(ξ)=

∴由随机变量ξ的分布列的性质得:

解得a= ,b= ,c=

∴D(ξ)=(1﹣ 2× +(2﹣ 2× +(3﹣ 2× =

故选:D.

【考点精析】解答此题的关键在于理解离散型随机变量及其分布列的相关知识,掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某食品的保鲜时间t(单位:小时与储藏温度x(单位:℃)满足函数关系t=且该食品在4℃的保鲜时间是16小时。已知甲在某日上午10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间变化如图所示。给出以下四个结论:

①该食品在6℃的保鲜时间是8小时;

②当x∈[-6,6]时,该食品的保鲜时间t随着x增大而逐渐减少;

到了此日13时,甲所购买的食品还在保鲜时间内;

④到了此日14时,甲所购买的食品已然过了保鲜时间。

其中,所有正确结论的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数的图象经过点,且函数= 是偶函数

(1)的解析式;

(2)已知,求函数的最大值和最小值

(3)函数的图象上是否存在这样的点,其横坐标是正整数,纵坐标是一个完全平方数?如果存在,求出这样的点的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在下列四个正方体中,为正方体的两个顶点,为所在棱的中点,则在这四个正方体中,直接与平面不平行的是(

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图PA⊥平面ABCDABCD是矩形,PA=AB=1AD=,点F是PB的中点,点E在边BC上移动.

1)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;

2)证明:无论点E在边BC的何处,都有PE⊥AF.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果对定义在R上的函数f(x)对任意两个不相等的实数x1 , x2 , 都有(x1﹣x2)[f(x1)﹣f(x2)]>0,则称函数f(x)为“H函数”.给出下列函数①y=﹣x3+x+1;②y=3x﹣2(sinx﹣cosx);③y=ex+1;④ .其中“H函数”的个数为(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在三棱柱ABCA1B1C1中,△ABC与△A1B1C1都为正三角形且AA1⊥面ABCFF1分别是ACA1C1的中点.

求证:(1)平面AB1F1平面C1BF

(2)平面AB1F1⊥平面ACC1A1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P ABCD中,ABCDABADCD2AB,平面PAD⊥底面ABCDPAADEF分别为CDPC的中点.

求证:(1) BE∥平面PAD

(2) 平面BEF⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 f(x)=2sin2ωx+2sinωxcosωx﹣1(ω>0)的周期为π.
(Ⅰ)求ω的值;
(Ⅱ)求函数f(x)在[ ]上的值域.

查看答案和解析>>

同步练习册答案