【题目】2018年国际象棋奥林匹克团体赛中国男队、女队同时夺冠.国际象棋中骑士的移动规则是沿着3×2格或2×3格的对角移动.在历史上,欧拉、泰勒、哈密尔顿等数学家研究了“骑士巡游”问题:在格的黑白相间的国际象棋棋盘上移动骑士,是否可以让骑士从某方格内出发不重复地走遍棋盘上的每一格?
图(一)给出了骑士的一种走法,它从图上标1的方格内出发,依次经过标2,3,4,5,6,,到达标64的方格内,不重复地走遍棋盘上的每一格,又可从标64的方格内直接走回到标1的方格内.如果骑士的出发点在左下角标50的方格内,按照上述走法,_____(填“能”或“不能”)走回到标50的方格内.
若骑士限制在图(二)中的3×4=12格内按规则移动,存在唯一一种给方格标数字的方式,使得骑士从左上角标1的方格内出发,依次不重复经过2,3,4,5,6,,到达右下角标12的方格内,分析图(二)中A处所标的数应为____.
科目:高中数学 来源: 题型:
【题目】已知椭圆:的焦距为8,其短轴的两个端点与长轴的一个端点构成正三角形。
(1)求的方程;
(2)设为的左焦点,为直线上任意一点,过点作的垂线交于两点,.
(i)证明:平分线段(其中为坐标原点);
(ii)当取最小值时,求点的坐标。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lnx﹣x2+ax,g(x)=ex﹣e,其中a>0.
(1)若a=1,证明:f(x)≤0;
(2)用max{m,n}表示m和n中的较大值,设函数h(x)=max{f(x),g(x)},讨论函数h(x)在(0,+∞)上的零点的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,直线的参数方程为(为参数,),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程是.
(1)求直线的普通方程和曲线的直角坐标方程;
(2)已知直线与曲线交于两点,且,求实数的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的最小正周期为,将函数的图像向右平移个单位长度,再向下平移个单位长度,得到函数的图像.
(1)求函数的单调递增区间;
(2)在锐角中,角的对边分别为,若,,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C1:y=cos x,C2:y=sin (2x+),则下面结论正确的是( )
A. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2
B. 把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2
C. 把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C2
D. 把C1上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线C2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过椭圆W:的左焦点作直线交椭圆于两点,其中 ,另一条过的直线交椭圆于两点(不与重合),且点不与点重合.过作轴的垂线分别交直线,于,.
(Ⅰ)求点坐标和直线的方程;
(Ⅱ)求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校200名学生的数学期中考试成绩频率分布直方图如图所示,其中成绩分组区间是
(1)求图中的值;
(2)根据频率分布直方图,估计这200名学生的平均分;
(3)若这200名学生的数学成绩中,某些分数段的人数与英语成绩相应分数段的人数之比如表所示,求英语成绩在的人数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com