精英家教网 > 高中数学 > 题目详情
已知一颗粒子等可能地落入如图所示的四边形ABCD内的任意位置,如果通过大量的实验发现粒子落入△BCD内的频率稳定在附近,那么点A和点C到直线BD的距离之比约为         
   

试题分析:设粒子落入△BCD内的频率为粒子落入△BAD内的频率为
点A和点C到时直线BD的距离
根据题意:=1-=1-=
又∵===

故答案为
点评:基础题,计算几何概型的概率,基本方法是:分别求得构成事件A的区域“几何度量”和试验的全部结果所构成的区域“几何度量”,两者求比值,即为概率。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PD⊥面ABCD,AD∥BC,CD=13,AB=12,BC=10,AD =12 BC. 点E、F分别是棱PB、边CD的中点.(1)求证:AB⊥面PAD; (2)求证:EF∥面PAD

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是直线,是平面,给出下列命题:
①若,则
②若,则
③若m,n,m,n,则
④若,则
其中正确的命题是(   )。
A.①②B.②④C.②③D.③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为两条不同的直线,为两个不同的平面,则下列推理中正确的是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是平面,是直线,给出下列命题,其中正确的命题的个数是(      )
( 1 )若,则
( 2 )若,则
( 3 )如果是异面直线,那么相交
( 4 )若,且,则.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,五面体中, ,底面ABC是正三角形, =2.四边形是矩形,二面角为直二面角,D为中点。
(I)证明:平面
(II)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知正三棱锥的底面边长为4,高为3,在正三棱锥内任取一点,使得的概率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正方体中,,点的中点,点上,若平面,则________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在如图所示的四棱锥中,已知 PA⊥平面ABCD
的中点.

(1)求证:MC∥平面PAD
(2)求直线MC与平面PAC所成角的余弦值;
(3)求二面角的平面角的正切值.

查看答案和解析>>

同步练习册答案