精英家教网 > 高中数学 > 题目详情

【题目】某学校高三年级有学生1 000名,经调查,其中750名同学经常参加体育锻炼(称为A类同学),另外250名同学不经常参加体育锻炼(称为B类同学),现用分层抽样方法(按A类、B类分两层)从该年级的学生中共抽查100名同学,如果以身高达165 cm作为达标的标准,对抽取的100名学生,得到以下列联表:

身高达标

身高不达标

总计

经常参加体育锻炼

40

不经常参加体育锻炼

15

总计

100


(1)完成上表;
(2)能否在犯错误的概率不超过0.05的前提下认为经常参加体育锻炼与身高达标有关系(K2的观测值精确到0.001)?

【答案】
(1)解:填写列联表如下:

身高达标

身高不达标

总计

经常参加体育锻炼

40

35

75

不经常参加体育锻炼

10

15

25

总计

50

50

100


(2)解:由列联表中的数据,得K 2的观测值为

所以不能在犯错误的概率不超过0.05的前提下认为经常参加体育锻炼与身高达标有关系.


【解析】(1)根据题意可知抽取的学生中经常参加体育锻炼的学生为75人,不经常参加体育锻炼的学生为25人,从而可完成表格;(2)根据(1)中的表格及K的公式求值,并得出结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点P是长轴长为 的椭圆Q: 上异于顶点的一个动点,O为坐标原点,A为椭圆的右顶点,点M为线段PA的中点,且直线PA与OM的斜率之积恒为
(1)求椭圆Q的方程;
(2)设过左焦点F1且不与坐标轴垂直的直线l交椭圆于C,D两点,线段CD的垂直平分线与x轴交于点G,点G横坐标的取值范围是 ,求|CD|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程
在直角坐标系 中,直线 的参数方程为 为参数),以原点为极点, 轴正半轴为极轴建立极坐标系,圆 的极坐标方程为 .
(1)写出直线 的普通方程及圆 的直角坐标方程;
(2)点 是直线 上的点,求点 的坐标,使 到圆心 的距离最小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知单调递增的等比数列满足,且的等差中项.

(Ⅰ)求数列的通项公式;

(Ⅱ)若,对任意正数数 恒成立,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某渔船在航行中不幸遇险,发出呼叫信号,我海军舰艇在处获悉后,立即测出该渔船在方位角(从指北方向顺时针转到目标方向线的水平角)为,距离为15海里的处,并测得渔船正沿方位角为的方向,以15海里/小时的速度向小岛靠拢,我海军舰艇立即以海里/小时的速度前去营救,求舰艇靠近渔船所需的最少时间和舰艇的航向.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校艺术节对同一类的 四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:
甲说:“是 作品获得一等奖”;
乙说:“ 作品获得一等奖”;
丙说:“ 两项作品未获得一等奖”;
丁说:“是 作品获得一等奖”.
若这四位同学中只有两位说的话是对的,则获得一等奖的作品是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某机构为了解某市民用电情况,抽查了该市100户居民月均用电量(单位:分组的频率分布直方图如图所示.

(1)求样本中月均用电量为的用户数量;

(2)估计月均用电量的中位数;

(3)在月均用电量为的四组用户中,用分层抽样的方法抽取22户居民,则月均用电量为的用户中应该抽取多少户?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设双曲线 (a>0,b>0)的左焦点为F1 , 左顶点为A,过F1作x轴的垂线交双曲线于P、Q两点,过P作PM垂直QA于M,过Q作QN垂直PA于N,设PM与QN的交点为B,若B到直线PQ的距离大于a+ ,则该双曲线的离心率取值范围是(
A.(1﹣
B.( ,+∞)
C.(1,2
D.(2 ,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正方体ABCD-A1B1C1D1,M,N分别为棱C1D1,C1C的中点,有以下四个结论:

直线AMCC1是相交直线;直线AMBN是平行直线;

直线BNMB1是异面直线; 直线MNAC所成的角为60°.

其中正确的结论为___  (:把你认为正确的结论序号都填上).

查看答案和解析>>

同步练习册答案