【题目】已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1,x2,设m=,n=,现有如下命题:
①对于任意不相等的实数x1,x2,都有m>0;
②对于任意的a及任意不相等的实数x1,x2,都有n>0;
③对于任意的a,存在不相等的实数x1,x2,使得m=n;
④对于任意的a,存在不相等的实数x1,x2,使得m=-n.
其中真命题有___________________(写出所有真命题的序号).
【答案】①④
【解析】对于①,因为f '(x)=2xln2>0恒成立,故①正确
对于②,取a=-8,即g'(x)=2x-8,当x1,x2<4时n<0,②错误
对于③,令f '(x)=g'(x),即2xln2=2x+a
记h(x)=2xln2-2x,则h'(x)=2x(ln2)2-2
存在x0∈(0,1),使得h(x0)=0,可知函数h(x)先减后增,有最小值.
因此,对任意的a,m=n不一定成立.③错误
对于④,由f '(x)=-g'(x),即2xln2=-2x-a
令h(x)=2xln2+2x,则h'(x)=2x(ln2)2+2>0恒成立,
即h(x)是单调递增函数,
当x→+∞时,h(x)→+∞
当x→-∞时,h(x)→-∞
因此对任意的a,存在y=a与函数h(x)有交点.④正确
科目:高中数学 来源: 题型:
【题目】已知向量,,
(1)求函数的最小正周期及取得最大值时对应的x的值;
(2)在锐角三角形ABC中,角A、B、C的对边为a、b、c,若,求三角形ABC面积的最大值并说明此时该三角形的形状.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于定义域为R的函数f(x),若f(x)在(-∞,0)和(0,+∞)上均有零点,则称函数f(x)为“含界点函数”,则下列四个函数中,不是“含界点函数”的是( )
A. f(x)=x2+bx-1(b∈R) B. f(x)=2-|x-1|
C. f(x)=2x-x2 D. f(x)=x-sin x
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=x3-kx,其中实数k为常数.
(1)当k=4时,求函数的单调区间;
(2)若曲线y=f(x)与直线y=k只有一个交点,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数 .
(1)若函数在上单调递增,求的取值范围;
(2)设函数,若对任意的,都有 ,求的取值范围;
(3)设,点是函数与的一个交点,且函数与在点处的切线互相垂直,求证:存在唯一的满足题意,且.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】据统计,目前微信用户已达10亿,2016年,诸多传统企业大佬纷纷尝试进入微商渠道,让这个行业不断地走向正规化、规范化.2017年3月25日,第五届中国微商博览会在山东济南舜耕国际会展中心召开,力争为中国微商产业转型升级,某品牌饮料公司对微商销售情况进行中期调研,从某地区随机抽取6家微商一周的销售金额(单位:百元)的茎叶图如图所示,其中茎为十位数,叶为个位数.
(1)若销售金额(单位:万元)不低于平均值的微商定义为优秀微商,其余为非优秀微商,根据茎叶图推断该地区110家微商中有几家优秀?
(2)从随机抽取的6家微商中再任取2家举行消费者回访调查活动,求恰有1家是优秀微商的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数的定义域为,如果存在正实数,使得对任意,都有,且恒成立,则称函数为上的“的型增函数”,已知是定义在上的奇函数,且在时, ,若为上的“2017的型增函数”,则实数的取值范围是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=45°,点O在AB上,且OB=OC=AB,PO⊥平面ABC,DA∥PO,DA=AO=PO.
(1)求证:PB∥平面COD;
(2)求二面角O-CD-A的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com