精英家教网 > 高中数学 > 题目详情

【题目】 如图,在四棱锥中,底面为平行四边形,为等边三角形,平面平面

(Ⅰ)设分别为的中点,求证:平面

(Ⅱ)求证:平面

(Ⅲ)求直线与平面所成角的正弦值.

【答案】I)见解析;(II)见解析;(III.

【解析】

I)连接,结合平行四边形的性质,以及三角形中位线的性质,得到,利用线面平行的判定定理证得结果;

II)取棱的中点,连接,依题意,得,结合面面垂直的性质以及线面垂直的性质得到,利用线面垂直的判定定理证得结果;

III)利用线面角的平面角的定义得到为直线与平面所成的角,放在直角三角形中求得结果.

I)证明:连接,易知

又由,故

又因为平面平面

所以平面.

II)证明:取棱的中点,连接,依题意,得

又因为平面平面,平面平面

所以平面,又平面,故

又已知

所以平面.

III)解:连接,由(II)中平面

可知为直线与平面所成的角.

因为为等边三角形,的中点,

所以,又

中,

所以,直线与平面所成角的正弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某客户准备在家中安装一套净水系统,该系统为二级过滤,使用寿命为十年如图所示两个二级过滤器采用并联安装,再与一级过滤器串联安装.

其中每一级过滤都由核心部件滤芯来实现在使用过程中,一级滤芯和二级滤芯都需要不定期更换(每个滤芯是否需要更换相互独立).若客户在安装净水系统的同时购买滤芯,则一级滤芯每个160元,二级滤芯每个80.若客户在使用过程中单独购买滤芯则一级滤芯每个400元,二级滤芯每个200.现需决策安装净水系统的同时购买滤芯的数量,为此参考了根据100套该款净水系统在十年使用期内更换滤芯的相关数据制成的图表,其中表1是根据100个一级过滤器更换的滤芯个数制成的频数分布表,图2是根据200个二级过滤器更换的滤芯个数制成的条形图.

1:一级滤芯更换频数分布表

一级滤芯更换的个数

8

9

频数

60

40

2:二级滤芯更换频数条形图

100个一级过滤器更换滤芯的频率代替1个一级过滤器更换滤芯发生的概率,以200个二级过滤器更换滤芯的频率代替1个二级过滤器更换滤芯发生的概率.

1)求一套净水系统在使用期内需要更换的各级滤芯总个数恰好为16的概率;

2)记表示该客户的净水系统在使用期内需要更换的二级滤芯总数,求的分布列及数学期望;

3)记分别表示该客户在安装净水系统的同时购买的一级滤芯和二级滤芯的个数.,且,以该客户的净水系统在使用期内购买各级滤芯所需总费用的期望值为决策依据,试确定的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若对任意的正整数,集合的任意元子集中,总有三个元素两两互素.的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从抛物线上任意一点轴作垂线段垂足为,点是线段上的一点,且满足.

1)求点的轨迹的方程;

2)设直线与轨迹交于两点,点为轨迹上异于的任意一点,直线分别与直线交于两点.问:轴正半轴上是否存在定点使得以为直径的圆过该定点?若存在,求出符合条件的定点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正方形的边长为,已知,将沿边折起,折起后点在平面上的射影为点,则翻折后的几何体中有如下描述:①所成角的正切值为;②;③;④平面平面,其中正确的命题序号为___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直四棱柱ABCDA1B1C1D1的底面是菱形,AA1=4AB=2,∠BAD=60°,EMN分别是BCBB1A1D的中点.

1)证明:MN∥平面C1DE

2)求点C到平面C1DE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在三棱台中,点上,且,点内(含边界)的一个动点,且有平面平面,则动点的轨迹是( )

A. 平面B. 直线C. 线段,但只含1个端点D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在三棱锥S-ABC,∠ABC=90°,DAC的中点SA=SB=SC.

(1)求证:SD⊥平面ABC;

(2)AB=BC,求证:BD⊥平面SAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=(nN*

Ⅰ)证明当n≥2时,数列{nan}是等比数列,并求数列{an}的通项an

Ⅱ)求数列{n2an}的前n项和Tn

Ⅲ)对任意nN*,使得 恒成立,求实数λ的最小值.

查看答案和解析>>

同步练习册答案