精英家教网 > 高中数学 > 题目详情

在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=1.

(1)求异面直线B1C1与AC所成角的大小;

(2)若该直三棱柱ABC-A1B1C1的体积为,求点A到平面A1BC的距离.

 

【答案】

(1)45°;(2).

【解析】

试题分析:(1)求异面直线所成的角,关键是作出这两条直线所成的角,作法是利用平移思想(即作平行线),当然我们要充分利用图中已有的平行关系作图,如本题中有,就不需要另外作平行线了,还要注意的是异面直线所成的角不大于90°;(2)求点到平面的距离,一般要作出垂线段,求垂线段的长,即过点作平面的垂线,首先观察寻找原有图形中的垂直关系,发现可证平面⊥平面,因此我们只要在平面内作,垂足为,则可证为所要求的垂线段,其长即为要求的距离.另外由于点,平面所在的三棱锥的体积很容易求得,故也可用体积法求解.

试题解析:(1)∵BC∥B1C1

∴∠ACB为异面直线B1C1与AC所成角(或它的补角),(2分)

∵∠ABC=90°,AB=BC=1,

∴∠ACB=45°,

∴异面直线B1C1与AC所成角为45°.(4分)

(2)∵,三棱柱的体积.

,(2分)

⊥平面1,∴,

设点A到平面A1BC的距离为h,(4分)

三棱锥A1-ABC的体积V==三棱锥A-A1BC的体积V=,(6分)

.(8分)

考点:(1)异面直线所成的角;(2)点到平面的距离.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在直三棱柱ABC-A′B′C′中,已知AA′=4,AC=BC=2,∠ACB=90°,D是AB的中点.
(Ⅰ)求证:CD⊥AB′;
(Ⅱ)求二面角A′-AB′-C的大小;
(Ⅲ)求直线B′D与平面AB′C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泸州一模)如图,在直三棱柱ABC-A′B′C′中,AB=BC=CA=a,AA′=
2
a
,则AB′与侧面AC′所成角的大小为
30°
30°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A′B′C′中,AA′=AB=BC=1,∠ABC=90°.棱A′C′上有两个动点E,F,且EF=a (a为常数).
(Ⅰ)在平面ABC内确定一条直线,使该直线与直线CE垂直;
(Ⅱ)判断三棱锥B-CEF的体积是否为定值.若是定值,求出这个三棱锥的体积;若不是定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在直三棱柱ABC-A′B′C′中,∠BAC=90°,AB=BB′=1,直线B′C与平面ABC成30°角.
(1)求证:A′B⊥面AB′C;
(2)求二面角B-B′C-A的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在直三棱柱ABC-A′B′C′中,点D是BC的中点,∠ACB=90°,AC=BC=1,AA′=2,
(1)欲过点A′作一截面与平面AC'D平行,问应当怎样画线,写出作法,并说明理由;
(2)求异面直线BA′与 C′D所成角的余弦值.

查看答案和解析>>

同步练习册答案