精英家教网 > 高中数学 > 题目详情

【题目】已知点A(1,2),B(﹣3,﹣1),若圆x2+y2=r2(r>0)上恰有两点M,N,使得△MAB和△NAB的面积均为5,则r的取值范围是

【答案】(1,3)
【解析】解:由题意可得|AB|= =5,根据△MAB和△NAB的面积均为5,

可得两点M,N到直线AB的距离为2.

由于AB的方程为 ,即3x﹣4y+5=0.

若圆上只有3个点到直线AB的距离为2,

则有圆心(0,0)到直线AB的距离 =r﹣2,解得r=3,

又圆上的点到AB的距离最大值为1+r(只有一个点),故当r≤1时1+r≤2,不可能存在两点到AB的距离都是2.

故r>1

此时AB与圆相交

要满足题意,则r﹣1<2得r<3

∴1<r<3

所以答案是:(1,3).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c,已知cosB= ,tanC= . (Ⅰ)求tanB和tanA;
(Ⅱ)若c=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的减函数,其导函数f′(x)满足 +x<1,则下列结论正确的是(
A.对于任意x∈R,f(x)<0
B.对于任意x∈R,f(x)>0
C.当且仅当x∈(﹣∞,1),f(x)<0
D.当且仅当x∈(1,+∞),f(x)>0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx+ ,其中a为大于零的常数..
(1)若函数f(x)在区间[1,+∞)内单调递增,求a的取值范围;
(2)求函数f(x)在区间[1,2]上的最小值;
(3)求证:对于任意的n∈N* , 且n>1时,都有lnn> + +…+ 成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知双曲线 =1(a>0,b>0)的左右焦点分别为F1 , F2 , |F1F2|=4,P是双曲线右支上的一点,F2P与y轴交于点A,△APF1的内切圆在边PF1上的切点为Q,若|PQ|=1,则双曲线的离心率是(
A.3
B.2
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平行四边形ABCD的三个顶点的坐标为A(﹣1,5),B(﹣2,﹣1),C(2,3).

(1)求平行四边形ABCD的顶点D的坐标;
(2)在△ACD中,求CD边上的高所在直线方程;
(3)求四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,a1=1,a2=4,a3=10,若{an+1﹣an}是等比数列,则 i=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点O为△ABC的外心,角A,B,C的对边分别满足a,b,c, (Ⅰ)若3 +4 +5 = ,求cos∠BOC的值;
(Ⅱ)若 = ,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设不经过坐标原点的直线与圆交于不同的两点.若直线的斜率与直线斜率满足,求面积的取值范围.

查看答案和解析>>

同步练习册答案