精英家教网 > 高中数学 > 题目详情
16.根据正弦函数的图象.能使不等式$\sqrt{2}$+2sinx≤0(0∈[0,2π])成立的x的解集为[$\frac{5π}{4}$,$\frac{7π}{4}$].

分析 画出图象得出sinx的图象,根据图象得到不等式的解集.

解答 解:$\sqrt{2}$+2sinx≤0,
∴sinx≤-$\frac{\sqrt{2}}{2}$,
∵sin($\frac{5π}{4}$)=-$\frac{\sqrt{2}}{2}$,sin($\frac{7π}{4}$)=-$\frac{\sqrt{2}}{2}$,
∴$\frac{5π}{4}$≤x≤$\frac{7π}{4}$,
∴不等式$\sqrt{2}$+2sinx≤0(0∈[0,2π])成立的x的解集为[$\frac{5π}{4}$,$\frac{7π}{4}$],
故答案为:[$\frac{5π}{4}$,$\frac{7π}{4}$].

点评 本题考查了是三角函数的性质,图象,不等式,求解含有三角函数的不等式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.某观察站C与两灯塔A、B的距离分别为200米和400米,测得灯塔A在观察站C北偏东30°,灯塔B在观察站C南偏东30°处,则两灯塔A、B间的距离为(  )
A.400米B.200$\sqrt{5}$米C.200$\sqrt{3}$米D.200$\sqrt{7}$米

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}的通项an=n2(cos2$\frac{nπ}{3}$-sin2$\frac{nπ}{3}$),n∈N*,其前n项和为Sn,则S60=1840.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若2∈{x+4,x2+x},则x=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知sin(x+$\frac{π}{6}$)=$\frac{1}{3}$,则sin(x-$\frac{5π}{6}$)+sin2(x-$\frac{π}{3}$)=$\frac{5}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=|sin(x+$\frac{π}{4}$)|.
(1)求函数f(x)的最小正周期和在区间[-$\frac{π}{4}$,$\frac{3π}{4}$]上的单调递增区间;
(2)当x在R上取何值时,函数取最小值和最大值,并求出最大值和最小值;
(3)若x是△ABC的一个内角,且f(x)=$\frac{\sqrt{2}}{2}$,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设函数f(x)=|sinx|的图象与直线y=kx(k>0)有且仅有三个公共点,这三个公共点横坐标的最大值为α,则α等于(  )
A.tanαB.-cosαC.sinαD.π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=x2-2x.
(1)求函数f(x)的解析式;
(2)求函数f(x)在区间[-1,a](a∈R)上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求下列函数的周期:
(1)y=tan2x,x≠$\frac{π}{4}$+$\frac{kπ}{2}$(k∈Z);
(2)y=5tan$\frac{x}{2}$,x≠(2k+1)π(k∈Z).

查看答案和解析>>

同步练习册答案