精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=xlnx﹣x,求函数f(x)的单调区间和极值.

【答案】解:∵f(x)=xlnx﹣x, ∴f(x)的定义域为(0,+∞),
f′(x)=lnx,
由f′(x)>0,得x>1;由f′(x)<0,得0<x<1.
∴f(x)的增区间为(1,+∞),单调减区间为(0,1).
∴x=1时,f(x)极小值=f(1)=﹣1
【解析】由已知得f(x)的定义域为(0,+∞),f′(x)=lnx,由此利用导数性质能求出函数f(x)的单调区间和极值.
【考点精析】关于本题考查的利用导数研究函数的单调性和函数的极值与导数,需要了解一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】海中一小岛的周围 内有暗礁,海轮由西向东航行至处测得小岛位于北偏东,航行8后,于处测得小岛在北偏东(如图所示).

1)如果这艘海轮不改变航向,有没有触礁的危险?请说明理由.

2)如果有触礁的危险,这艘海轮在处改变航向为东偏南方向航行,求的最小值.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司今年年初用25万元引进一种新的设备,投入设备后每年收益为21万元.该公司第n年需要付出设备的维修和工人工资等费用an的信息如图.

(1)求an
(2)引进这种设备后,第几年后该公司开始获利;
(3)这种设备使用多少年,该公司的年平均获利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,讨论函数的单调性;

(2)设,当时,若对任意,当时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以边长为的正三角形的顶点为坐标原点另外两个顶点在抛物线过抛物线的焦点的直线过交拋物线两点.

1)求抛物线的方程

2求证 为定值

3)求线段的中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某互联网理财平台为增加平台活跃度决定举行邀请好友拿奖励活动,规则是每邀请一位好友在该平台注册,并购买至少1万元的12月定期,邀请人可获得现金及红包奖励,现金奖励为被邀请人理财金额的,且每邀请一位最高现金奖励为300元,红包奖励为每邀请一位奖励50元.假设甲邀请到乙、丙两人,且乙、丙两人同意在该平台注册,并进行理财,乙、丙两人分别购买1万元、2万元、3万元的12月定期的概率如下表:

理财金额

万元

万元

万元

乙理财相应金额的概率

丙理财相应金额的概率

(1)求乙、丙理财金额之和不少于5万元的概率;

(2)若甲获得奖励为元,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex+aex , 若f′(x)≥2 恒成立,则a的取值范围为(
A.[3,+∞)
B.(0,3]
C.[﹣3,0)
D.(﹣∞,﹣3]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过定点P(2,0)的直线l与曲线y= 相交于A,B两点,O为坐标原点,当△AOB的面积取最大时,直线的倾斜角可以是:①30°;②45°;③60°;④120°⑤150°.其中正确答案的序号是 . (写出所有正确答案的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设O为坐标原点,曲线x2+y2+2x﹣6y+1=0上有两点P、Q,满足关于直线x+my+4=0对称,又满足 =0.
(1)求m的值;
(2)求直线PQ的方程.

查看答案和解析>>

同步练习册答案