(本题满分15分)
已知中心在原点O,焦点在x轴上,离心率为的椭圆过点(,).
(Ⅰ) 求椭圆的方程;
(Ⅱ) 设不过原点O的直线l与该椭圆交于P,Q两点,满足直线OP,PQ,OQ的斜率依次成等比数列,求△OPQ面积的取值范围.
(Ⅰ) 解:由题意可设椭圆方程为 (a>b>0),
则 故
所以,椭圆方程为 . ……………………………4分
(Ⅱ) 解:由题意可知,直线l的斜率存在且不为0,
故可设直线l的方程为 y=kx+m (m≠0),P(x1,y1),Q(x2,y2),
由 消去y得
(1+4k2)x2+8kmx+4(m2-1)=0,
则Δ=64 k2b2-16(1+4k2b2)(b2-1)=16(4k2-m2+1)>0,
且,. ……………………7分
故 y1 y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2.
因为直线OP,PQ,OQ的斜率依次成等比数列,
所以 ==k2,……………………9分
即 +m2=0,又m≠0,
所以 k2=,即 k=. …………………11分
由于直线OP,OQ的斜率存在,且Δ>0,得
0<m2<2 且 m2≠1.…………………12分
设d为点O到直线l的距离,
则 S△OPQ=d | PQ |=| x1-x2 | | m |=,…………………13分
所以 S△OPQ的取值范围为 (0,1). ……………………………15分
【解析】略
科目:高中数学 来源:2010-2011年江苏省如皋市五校高二下学期期中考试理科数学 题型:解答题
((本题满分15分)
某有奖销售将商品的售价提高120元后允许顾客有3次抽奖的机会,每次抽奖的方法是在已经设置并打开了程序的电脑上按“Enter”键,电脑将随机产生一个 1~6的整数数作为号码,若该号码是3的倍数则顾客获奖,每次中奖的奖金为100元,运用所学的知识说明这样的活动对商家是否有利。
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省招生适应性考试文科数学试卷(解析版) 题型:解答题
(本题满分15分)设函数.
(Ⅰ)若函数在上单调递增,在上单调递减,求实数的最大值;
(Ⅱ)若对任意的,都成立,求实数的取值范围.
注:为自然对数的底数.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省温州市十校联合体高三上学期期初摸底文科数学 题型:解答题
(本题满分15分)已知直线与曲线相切
1)求b的值;
2)若方程在上恰有两个不等的实数根,求
①m的取值范围;
②比较的大小
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省温州市十校联合体高三上学期期中考试文科数学 题型:解答题
(本题满分15分)已知抛物线:(),焦点为,直线交抛物线于、两点,是线段的中点,
过作轴的垂线交抛物线于点,
(1)若抛物线上有一点到焦点的距离为,求此时的值;
(2)是否存在实数,使是以为直角顶点的直角三角形?若存在,求出的值;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省六校高三第一次联考文科数学 题型:解答题
(本题满分15分)
已知函数
(1)求的单调区间;
(2)设,若在上不单调且仅在处取得最大值,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com