精英家教网 > 高中数学 > 题目详情

(本小题满分14分)如图,在长方体中,,点在棱上移动.

⑴ 证明://平面
⑵证明:
⑶ 当的中点时,求四棱锥的体积.

(1)证明:见解析;(2) 证明:见解析;(3) E-ACD1的体积为

解析试题分析:(1)利用线线平行的来证明线面平行。
(2)由AE⊥平面AA1DD1,A1D?平面AA1DD1,知A1D⊥AE,再由AA1DD1为正方形,利用直线与平面垂直的性质,能够证明A1D⊥D1E.
(3) 设点E到面ACD1的距离为h,在△ACD1中,AC=CD1=,AD1=,先求出△AD1C和△ACE的面积,再求出三棱锥D1-AEC的体积,由此能够求出点E到面ACD1的距离.进而得到体积。
(1)证明:∵ ABCD-A1B1C1D1是长方体
∴AB// D1C1,AB=D1C1,   ……1分
∴AB C1 D1为平行四边形,……2分
∴B C1 // AD1,         ……3分
又B C1平面ACD1,AD1Ì平面ACD1, ……4分
所以BC1//平面ACD1.   ……5分
(2) 证明:∵ AE⊥平面AA1D1D,A1DÌ平面AA1D1D,
∴ A1D⊥AE,                         ……6分
AA1D1D为正方形,∴A1D⊥A D1,                                 ……7分
又A1D∩AE =A,∴A1D⊥平面AD1E,                               ……9分
A1DÌ平面AD1E,∴A1D⊥D1E,                                   ……10分
(3) 解:,      ……12分
                          ……13分
所以E-ACD1的体积为.                                 ……14分
考点:本试题主要考查了空间中点线面的位置关系的运用证明线线的垂直,和线面平行以及几何体的体积的综合运用。
点评:解决该试题的关键是对于线面平行的判定定理和线面垂直的性质定理的灵活运用和熟练掌握,同时对于体积的求解,一般就是研究几何体的高既可以得到。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

图1是一个正方体的表面展开图,MN和PB是两条面对角线,请在图2的正方体中将MN和PB画出来,并就这个正方体解决下列问题

(1) 求证:MN//平面PBD; (2)求证:AQ平面PBD;
(3)求二面角P-DB-M的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)如图,有三个生活小区(均可看成点)分别位于三点处,,到线段的距离,(参考数据: ). 今计划建一个生活垃圾中转站,为方便运输,准备建在线段(不含端点)上.

(1)设,试将到三个小区距离的最远者表示为的函数,并求的最小值;
(2)设,试将到三个小区的距离之和表示为的函数,并确定当取何值时,可使最小?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题8分)如图所示,在正三棱柱中,若中点。

(1)证明:平面
(2)求所成的角的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12分)求一个球与它的外切圆柱、外切等边圆锥(圆锥的轴截面为正三角形)的三个体积之比。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,直三棱柱中,,是棱的中点,
(1)  证明:
(2)求二面角的大小. (12分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

把下面的符号语言改写成文字语言的形式,并画出图形。若直线平面直线,则平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题6分)已知圆台的母线长为4 cm,母线与轴的夹角为30°,上底面半径是下底面半径的,求这个圆台的侧面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图是某直三棱柱(侧棱与底面垂直的三棱柱)被削去上底后的直观图与三视图中的侧视图、俯视图,在直观图中,的中点,的中点,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.
(Ⅰ)求证:
(Ⅱ)求三棱锥的体积。

查看答案和解析>>

同步练习册答案