精英家教网 > 高中数学 > 题目详情
8.下列判断正确命题的个数为(  )
①“am2<bm2”是“a<b”的充要条件
②命题“若q则p”与命题“若非p则非q”互为逆否命题
③对于命题p:?x∈R,使得x2+x+1<0,则¬p为?x∈R,均有x2+x+1≥0
④命题“∅⊆{1,2}或4∉{1,2}”为真命题.
A.1B.2C.3D.4

分析 由充分必要条件的判定方法判断①;写出原命题的逆否命题判断②;写出特称命题的否定判断③;由复合命题的真假判定判断④.

解答 解:①am2<bm2成立能推出a<b成立;反之a<b成立,推不出am2<bm2,如m=0,故①错误,
②命题“若q则p”的逆否命题是“若非p则非q”,∴命题“若q则p”与命题“若非p则非q”互为逆否命题,故②正确;
③命题p:?x∈R,使得x2+x+1<0,则¬p为?x∈R,均有x2+x+1≥0,故③正确;
④命题“∅⊆{1,2}”为真命题,命题“4∉{1,2}”为真命题,∴命题“∅⊆{1,2}或4∉{1,2}”为真命题,故④正确.
∴正确命题的个数有3个.
故选:C.

点评 本题考查命题的真假判断与应用,考查了充分必要条件的判定方法,考查了命题的否定与逆否命题,考查复合命题的真假判断,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.己知三棱锥P-ABC,PA⊥底面ABC,PA=AB=BC=2,直线PC与平面ABC所成的角为arctan$\frac{\sqrt{2}}{2}$.
(1)求证:BC⊥平面PAB;
(2)设E为线段PC中点,求异面直线AE与BC所成的角的大小(结果用反三角函数值表示);
(3)设M是三棱锥P-ABC内的动点(包括边界).满足|AM|≤$\sqrt{2}$,求点M所形成的几何体的全面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.偶函数y=f(x)满足下列条件①x≥0时,f(x)=x3;②对任意x∈[t,t+1],不等式f(x+t)≥8f(x)恒成立,则实数t的取值范围是(  )
A.(-∞,-$\frac{3}{4}$]B.[-$\frac{3}{4},0$]C.[-2,$\frac{3}{4}$]D.[-$\frac{4}{3},1$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数f(x)=$lo{g}_{\frac{1}{2}}(3+2x-{x}^{2})$,则f(x)的值域是[-2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.给出下列关于互不相同的直线m,n,l和平面α,β的四个命题,其中正确命题的个数是(  )
(1)m?α,l∩α=A,点A∉m,则l与m不共面;
(2)l,m是异面直线,l∥α,m∥α,且n⊥l,n⊥m,则n⊥α;
(3)若l∥α,m∥β,α∥β,则l∥m;
(4)若l?α,m?α,l∩m=A,l∥β,m∥β,则α∥β,
(5)若l⊥α,l⊥n,则n∥α
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.给出下列结论:
①y=x2+1,x∈[-1,2],y的值域是[2,5];
②幂函数图象一定不过第四象限;
③函数f(x)=loga(2x-1)-1的图象过定点(1,0);
④若loga$\frac{1}{2}$>1,则a的取值范围是($\frac{1}{2}$,1);
⑤若2-x-2y>lnx-ln(-y)(x>0,y<0),则x+y<0.
其中正确的序号是②④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若偶函数y=f(x),x∈R,满足f(x+2)=-f(x),且x∈[0,2]时,f(x)=3-x2,则方程f(x)=sin|x|在[-10,10]内的根的个数为(  )
A.12B.10C.9D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.求函数f(x)=x-0.2+2x0.5,的定义域为(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,内角A,B,C所对的边分别为a,b,c.a=8,b-c=2,cosA=-$\frac{1}{4}$
(Ⅰ)求△ABC的面积S△ABC和sinB
(Ⅱ)$cos(2A-\frac{π}{6})$的值.

查看答案和解析>>

同步练习册答案