精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的中心在原点,焦点在x轴上,离心率为 , 且经过点M(4,1),直线l:y=x+m交椭圆于不同的两点A,B.
(Ⅰ)求椭圆的方程;
(Ⅱ)求m的取值范围;

【答案】解:(Ⅰ)设椭圆的方程为
∵椭圆的离心率为e=
∴a2=4b2
又∵M(4,1),
,解得b2=5,a2=20,故椭圆方程为
(Ⅱ)将y=x+m代入并整理得
5x2+8mx+4m2﹣20=0,
∵直线l:y=x+m交椭圆于不同的两点A,B
∴△=(8m)2﹣20(4m2﹣20)>0,解得﹣5<m<5
【解析】(I)设出椭圆的标准方程,根据椭圆的离心率为 , 得出a2=4b2 , 再根据M(4,1)在椭圆上,解方程组得b2=5,a2=20,从而得出椭圆的方程;
(II)因为直线l:y=x+m交椭圆于不同的两点A,B,可将直线方程与椭圆方程消去y得到关于x的方程,有两个不相等的实数根,从而△>0,解得﹣5<m<5;

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆,点P(2,0).

(I)求椭圆C的短轴长与离心率;

( II)(1,0)的直线与椭圆C相交于M、N两点,设MN的中点为T,判断|TP||TM|的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学教职工春季竞走比赛在校田径场隆重举行,为了解高三年级男、女两组教师的比赛用时情况,体育组教师从两组教师的比赛成绩中,分别各抽取9名教师的成绩(单位:分钟),制作成下面的茎叶图,但是女子组的数据中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以a表示,规定:比赛用时不超过19分钟时,成绩为优秀.
(1)若男、女两组比赛用时的平均值相同,求a的值;
(2)求女子组的平均用时高于男子组平均用时的概率;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=x3+sinx+2x的定义域为R,数列{an}是公差为d的等差数列,且a1+a2+a3+a4+…a2015<0,记m=f(a1)+f(a2)+f(a3)+…f(a2015),关于实数m,下列说法正确的是(  )
A.m恒为负数
B.m恒为正数
C.当d>0时,m恒为正数;当d<0时,m恒为负数
D.当d>0时,m恒为负数;当d<0时,m恒为正数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车的燃油效率是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )

A. 消耗1升汽油,乙车最多可行驶5千米

B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多

C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油

D. 某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在用二次法求方程3x+3x-8=0在(12)内近似根的过程中,已经得到f1)<0f1.5)>0f1.25)<0,则方程的根落在区间(  )

A. B. C. D. 不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,则输出的T值为(  )

A.30
B.54
C.55
D.91

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=2ax﹣x2+lnx,a为常数.
当a=时,求f(x)的最大值;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为中国传统智力玩具鲁班锁,起源于古代汉族建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分(即樟卯结构)啮合,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称,六根完全相同的正四棱柱分成三组,经90°榫卯起来.现有一鲁班锁的正四校柱的底面正方形边长为1,欲将其放入球形容器内(容器壁的厚度忽略不计),若球形容器表面积的最小值为30π,则正四棱柱的高为______

查看答案和解析>>

同步练习册答案