精英家教网 > 高中数学 > 题目详情
如图,PA平面ABCD,四边形ABCD为矩形,PA=AB=,AD=1,点F是PB的中点,点E在边BC上移动.

(I)求三棱锥E—PAD的体积;
(II)试问当点E在BC的何处时,有EF//平面PAC;
(1lI)证明:无论点E在边BC的何处,都有PEAF.
见解析

试题分析:(Ⅰ)注意到PA平面ABCD,得知的长即为三棱锥的高,而三棱锥的体积等于的体积,计算即得.
(Ⅱ)当点的中点时,与平面平行.
利用三角形中位线定理,得到,进一步得出∥平面
(Ⅲ)证明:根据等腰三角形得出,根据平面平面
得到 ,又因为 且?平面,得到平面,又平面
再根据平面,及平面,根据,作出结论.
试题解析:(Ⅰ)由已知PA平面ABCD,所以的长即为三棱锥的高,三棱锥的体积等于的体积
= =
(Ⅱ)当点的中点时,与平面平行.
∵在中,分别为的中点,连结
,又平面,而平面
∥平面
(Ⅲ)证明:因为,所以等腰三角形中,
平面平面
 
又因为 且?平面
平面,又平面

又∵
平面.PB,BE?平面PBE,
平面
,即无论点E在边的何处,都有
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在长方体中,, 沿平面把这个长方体截成两个几何体: 几何体(1);几何体(2)

(I)设几何体(1)、几何体(2)的体积分为是,求的比值
(II)在几何体(2)中,求二面角的正切值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正三棱柱ABC-A'B'C'中,D是BC的中点,AA'=AB=2

(1)求证:ADB'D;
(2)求三棱锥A'-AB'D的体积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图所示,矩形的对角线交于点G,AD⊥平面上的点,且BF⊥平面ACE

(1)求证:平面
(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直四棱柱ABCD–A1B1C1D1中,AB//CD,AD⊥AB,AB=2,AD=,AA1=3,E为CD上一点,DE=1,EC=3

(1)证明:BE⊥平面BB1C1C;
(2)求点到平面EA1C1的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

三棱锥的顶点为P,PA,PB,PC为三条棱,且PA,PB,PC两两垂直,又PA=2,PB=3,PC=4,则三棱锥P-ABC的体积是                      .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知正三棱锥PABC中,E,F分别是AC,PC的中点,若EFBF,AB=2,则三棱锥PABC的外接球的表面积为_________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

将某个圆锥沿着母线和底面圆周剪开后展开,所得的平面图是一个圆和扇形,己知该扇形的半径为24cm,圆心角为,则圆锥的体积是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在正三棱锥A-BCD中,E、F分别是AB、BC的中点,EF⊥DE,且BC=1,则正三棱锥A-BCD的体积是(    )

A.                  B.            C.        D.

查看答案和解析>>

同步练习册答案