精英家教网 > 高中数学 > 题目详情

【题目】已知数列满足:(常数),.数列满足:.

1)求的值;

2)求数列的通项公式;

3)是否存在k,使得数列的每一项均为整数?若存在,求出k的所有可能值;若不存在,请说明理由.

【答案】1;(2;(3

【解析】

1)经过计算可知:,由数列满足:,从而可求

2)由条件可知:,得,两式相减整理得,从而可求数列的通项公式;

3)假设存在正数,使得数列的每一项均为整数则由(2)可知,由,可求得2,证明2时,满足题意,说明12时,数列是整数列即可.

1)由已知得,

所以.

2)由条件可知:),①

所以.

②得.

即:.

因此:

),又因为

所以.

3)假设存在k,使得数列的每一项均为整数,则k为正整数.

由(2)知23…)③

,所以2

检验:当时,为整数,

利用结合③,各项均为整数;

时③变成23…

消去得:

,所以偶数项均为整数,

,所以为偶数,故,故数列是整数列.

综上所述,k的取值集合是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)选修44,坐标系与参数方程

已知曲线,直线为参数).

I)写出曲线的参数方程,直线的普通方程;

II)过曲线上任意一点作与夹角为的直线,交于点的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占,而男生有10人表示对冰球运动没有兴趣额.

(1)完成列联表,并回答能否有的把握认为“对冰球是否有兴趣与性别有关”?

有兴趣

没兴趣

合计

55

合计

(2)已知在被调查的女生中有5名数学系的学生,其中3名对冰球有兴趣,现在从这5名学生中随机抽取3人,求至少有2人对冰球有兴趣的概率.

附表:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直四棱柱ABCDA1B1C1D1的底面是菱形,AA1=4AB=2,∠BAD=60°,EMN分别是BCBB1A1D的中点.

1)证明:MN∥平面C1DE

2)求点C到平面C1DE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设实数满足,则下列不等式中不成立的是(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的极值;

(2)对于曲线上的不同两点,如果存在曲线上的点,且使得曲线在点处的切线,则称为弦的伴随直线,特别地,当时,又称—伴随直线.

①求证:曲线的任意一条弦均有伴随直线,并且伴随直线是唯一的;

②是否存在曲线,使得曲线的任意一条弦均有—伴随直线?若存在,给出一条这样的曲线,并证明你的结论;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy下,曲线C1的参数方程为 为参数),曲线C1在变换T的作用下变成曲线C2

1)求曲线C2的普通方程;

2)若m>1,求曲线C2与曲线C3y=m|x|-m的公共点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

1)求曲线的极坐标方程及的直角坐标方程;

2)设与曲线分别交于异于原点的点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数满足:①对任意实数,都有;②对任意,都有.

(1)求,并证明上的单调增函数;

(2)若恒成立,求实数的取值范围;

(3)已知,方程有三个根,若,求实数.

查看答案和解析>>

同步练习册答案