精英家教网 > 高中数学 > 题目详情
已知抛物线P:x2=2py (p>0).
(Ⅰ)若抛物线上点M(m,2)到焦点F的距离为3.
(ⅰ)求抛物线P的方程;
(ⅱ)设抛物线P的准线与y轴的交点为E,过E作抛物线P的切线,求此切线方程;
(Ⅱ)设过焦点F的动直线l交抛物线于A,B两点,连接AO,BO并延长分别交抛物线的准线于C,D两点,求证:以CD为直径的圆过焦点F.
分析:(Ⅰ)(ⅰ)欲求抛物线方程,需求出p值,根据抛物线上点到焦点F的距离与到准线距离相等,以及抛物线上点M(m,2)到焦点F的距离为3,可解得 p,问题得解.
(ⅱ)求出E点坐标,设出过E的抛物线P的切线方程,再根据直线方程与抛物线方程联立,△=0,即可求出k值,进而求出切线方程.
(Ⅱ)设出A,B两点坐标,以及过焦点F的动直线l方程,代入抛物线方程,求x1x2,x1+x2,再求C,D点坐标,用含x1,x2的式子表示
FC
FD
坐标,在证
FC
FD
共线即可.
解答:解:(Ⅰ)(ⅰ)由抛物线定义可知,抛物线上点M(m,2)到焦点F的距离与到准线距离相等,
即M(m,2)到y=-
p
2
的距离为3;
-
p
2
+2=3
,解得p=2.
∴抛物线P的方程为x2=4y.                                       
(ⅱ)抛物线焦点F(0,1),抛物线准线与y轴交点为E(0,-1),
显然过点E的抛物线的切线斜率存在,设为k,切线方程为y=kx-1.
x2=4y
y=kx-1
,消y得x2-4kx+4=0,
△=16k2-16=0,解得k=±1.                                    
∴切线方程为y=±x-1.                                          
(Ⅱ)直线l的斜率显然存在,设l:y=kx+
p
2

设A(x1,y1),B(x2,y2),
x2=2py
y=kx+
p
2
消y得 x2-2pkx-p2=0.   且△>0.
∴x1+x2=2pk,x1•x2=-p2
∵A(x1,y1),∴直线OA:y=
y1
x1
x

y=-
p
2
联立可得C(-
px1
2y1
,-
p
2
)
,同理得D(-
px2
2y2
,-
p
2
)
.          
∵焦点F(0,
p
2
)

FC
=(-
px1
2y1
,-p)
FD
=(-
px2
2y2
,-p)

FC
FD
=(-
px1
2y1
,-p)•(-
px2
2y2
,-p)
=
px1
2y1
px2
2y2
+p2=
p2x1x2
4y1y2
+p2
=
p2x1x2
4
x12
2p
x22
2p
+p2=
p4
x1x2
+p2=
p4
-p2
+p2=0

∴以CD为直径的圆过焦点F.
点评:本题考查了抛物线方程的求法,以及直线与抛物线的位置关系判断,做题时要认真分析,避免不必要的错误.
练习册系列答案
相关习题

科目:高中数学 来源:2010-2011学年北京市丰台区高三年级第二学期统一练习理科数学 题型:解答题

 

(本小题共14分)  

已知抛物线P:x2=2py (p>0).

(Ⅰ)若抛物线上点到焦点F的距离为

(ⅰ)求抛物线的方程;

(ⅱ)设抛物线的准线与y轴的交点为E,过E作抛物线的切线,求此切线方程;

(Ⅱ)设过焦点F的动直线l交抛物线于A,B两点,连接并延长分别交抛物线的准线于C,D两点,求证:以CD为直径的圆过焦点F.

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题共14分)  

已知抛物线Px2=2py (p>0).

(Ⅰ)若抛物线上点到焦点F的距离为

(ⅰ)求抛物线的方程;

(ⅱ)设抛物线的准线与y轴的交点为E,过E作抛物线的切线,求此切线方程;

(Ⅱ)设过焦点F的动直线l交抛物线于AB两点,连接并延长分别交抛物线的准线于CD两点,求证:以CD为直径的圆过焦点F

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线P:x2=2py (p>0).

(Ⅰ)若抛物线上点到焦点F的距离为

(ⅰ)求抛物线的方程;

(ⅱ)设抛物线的准线与y轴的交点为E,过E作抛物线的切线,求此切线方程;

(Ⅱ)设过焦点F的动直线l交抛物线于A,B两点,连接并延长分别交抛物线的准线于C,D两点,求证:以CD为直径的圆过焦点F.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年北京43中高三(上)期中数学试卷(理科)(解析版) 题型:解答题

已知抛物线P:x2=2py (p>0).
(Ⅰ)若抛物线上点M(m,2)到焦点F的距离为3.
(ⅰ)求抛物线P的方程;
(ⅱ)设抛物线P的准线与y轴的交点为E,过E作抛物线P的切线,求此切线方程;
(Ⅱ)设过焦点F的动直线l交抛物线于A,B两点,连接AO,BO并延长分别交抛物线的准线于C,D两点,求证:以CD为直径的圆过焦点F.

查看答案和解析>>

同步练习册答案