精英家教网 > 高中数学 > 题目详情
19.如图,三棱锥P-ABC中,BC⊥平面PAB,PA=PB=AB=6,BC=9,点M,N分别为PB,BC的中点.
(1)求证:AM⊥平面PBC;
(2)E是线段AC上的点,且AM∥平面PNE.
①确定点E的位置;②求直线PE与平面PAB所成角的正弦值.

分析 (1)推导出AM⊥PB,AM⊥BC,由此能证明AM⊥平面PBC.
(2)①连结MC,交PN于F,则F是△PBC的重心,由此能求出E为靠近A的AC的一个三等分点.
②作EH⊥AB于H,则EH∥BC,∠EPH是直线PE与平面PAB所成的角,由此能求出直线PE与平面PAB所成角的正弦值.

解答 证明:(1)∵$PA\$=AB,M为PB中点,∴AM⊥PB,
∵BC⊥平面PAB,AM?平面PAB,∴AM⊥BC,
∵PB∩BC=B,∴AM⊥平面PBC.
解:(2)①连结MC,交PN于F,则F是△PBC的重心,且MF=$\frac{1}{3}$MC,
∵AM∥平面PNC,AM?平面AMC,平面AMC∩平面PEN=EF,
∴AM∥EF,AE=$\frac{1}{3}$AC=2$\sqrt{2}$,即E为靠近A的AC的一个三等分点.
②作EH⊥AB于H,则EH∥BC,
∴EH⊥平面PAB,
∴∠EPH是直线PE与平面PAB所成的角,
且HE=$\frac{1}{3}$BC=3,HA=$\frac{1}{3}$BA=2,
∴PH=$\sqrt{{6}^{2}+{2}^{2}-2×6×2×cos\frac{π}{3}}$=2$\sqrt{7}$,PE=$\sqrt{28+9}=\sqrt{37}$,
∴sin$∠EPH=\frac{HE}{PE}$=$\frac{3\sqrt{37}}{37}$,
∴直线PE与平面PAB所成角的正弦值是$\frac{3\sqrt{37}}{37}$.

点评 本题考查线面垂直的证明,考查点的位置的判断,考查线面角的正弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知命题p:$\frac{x^2}{k}+\frac{y^2}{4-k}=1$表示焦点x在轴上的椭圆,命题q:$\frac{x^2}{k-1}+\frac{y^2}{k-3}=1$表示双曲线,p∨q为真,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知A(3,2),B(-4,1),C(0,-1),点Q线段AB上的点,则直线CQ的斜率取值范围是$(-∞,-\frac{1}{2}]∪[1,+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.给出下列五个结论:
①从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本编号从小到大依次为007,032,…,则样本中最大的编号是482;
②命题“?x∈R,均有x2-3x-2>0”的否定是:“?x0∈R,使得x02-3x0-2≤0”;
③将函数$y=\sqrt{3}cosx+sinx(x∈R)$的图象向右平移$\frac{π}{6}$后,所得到的图象关于y轴对称;
④?m∈R,使$f(x)=({m-1})•{x^{{m^2}-4m+3}}$是幂函数,且在(0,+∞)上递增;
⑤如果{an}为等比数列,bn=a2n-1+a2n+1,则数列{bn}也是等比数列.
其中正确的结论为(  )
A.①②④B.②③⑤C.①③④D.①②⑤

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知指数函数y=g(x)满足:g($\frac{1}{2}$)=$\sqrt{2}$,定义域为R的函数f(x)=$\frac{1-g(x)}{m+2g(x)}$是奇函数.
(1)确定y=f(x)和y=g(x)的解析式;
(2)判断函数f(x)的单调性,并用定义证明;
(3)解关于t的不等式f(t2-2t)+f(2t2-1)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知sin2α=$\frac{4}{5}$,α∈(0,$\frac{π}{4}$),sin(β-$\frac{π}{4}$)=$\frac{3}{5}$,β∈($\frac{π}{4}$,$\frac{π}{2}$).
(1)求sinα和cosα的值;
(2)求tan(α+2β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知条件p:k=$\sqrt{3}$;条件q:直线y=kx+2与圆x2+y2=1相切,则¬p是¬q的(  )
A.充分必要条件B.必要不充分条件
C.充分不必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图所示,正方体ABCD-A′B′C′D′的棱长为1,O是平面A′B′C′D′的中心,则O到平面ABC′D′的距离是(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{4}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知随机变量X服从二项分布B(n,p),若E(X)=30,D(X)=20,则n,p分别等于(  )
A.n=45,p=$\frac{2}{3}$B.n=45,p=$\frac{1}{3}$C.n=90,p=$\frac{1}{3}$D.n=90,p=$\frac{2}{3}$

查看答案和解析>>

同步练习册答案