精英家教网 > 高中数学 > 题目详情
1.已知全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},则(∁UM)∪(∁UN)=(  )
A.{2,4}B.{2,3,5}C.{1,3,4,5}D.{2,3,4,5}

分析 根据补集与并集的定义,写出运算结果即可.

解答 解:全集U={1,2,3,4,5},
集合M={1,4},N={1,3,5},
则∁UM={2,3,5},
UN={2,4},
所以(∁UM)∪(∁UN)={2,3,4,5}.
故选:D.

点评 本题考查了补集和并集的运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为$ρ=2({sinθ+cosθ+\frac{1}{ρ}})$.
(1)求曲线C的参数方程;
(2)在曲线C上任取一点P(x,y),求的3x+4y最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,左顶点到直线x+2y-2=0的距离为$\frac{{4\sqrt{5}}}{5}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l与椭圆C相交于A、B两点,若以AB为直径的圆经过坐标原点O,试探究:点O到直线AB的距离是否为定值?若是,求出这个定值;否则,请说明理由;
(Ⅲ)在(2)的条件下,试求△AOB面积S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.a,b,c分别是△ABC内角A,B,C的对边,a+c=4,sinA(1+cosB)=(2-cosA)sinB,则△ABC面积的最大值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知等比数列{an}的公比q>1,a1=1,且a1,2a2-1,a3成等差数列.
(1)求数列{an}的通项公式;
(2)设an•bn=$\frac{{3}^{n}}{{n}^{2}+n}$,求数列{bn}的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.函数f(x)=$\frac{1+lnx}{x}$.
(Ⅰ)判断f(x)的单调性,并求f(x)的极值;
(Ⅱ)求证:当x≥1时,$\frac{(x+1)(1+lnx)}{x}$≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若正三棱锥的正视图与俯视图如图所示,则它的侧视图的面积为(  )
A.$\sqrt{3}$B.$\frac{3}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某大学生从全校学生中随机选取100名统计他们的鞋码大小,得到如下数据:
鞋码 35  36 37 3839  4041 42  43 44 合计
男生 -- 3 6 8 11 12 6 7 2 55
 女生 4 6 12 9 9 2 2-- 1 45
(1)某鞋店计划采购某种款式的女鞋1000双,则其中38号鞋应有多少双?
(2)完成频率分布直方图,并估计该校学生的平均鞋码.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知直线x-y+2=0与圆C:(x-3)2+(y-3)2=4(圆心为C)交于点A,B,则∠ACB的大小为(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

同步练习册答案