精英家教网 > 高中数学 > 题目详情

,函数.
(1)若,求曲线在点处的切线方程;
(2)若无零点,求实数的取值范围;
(3)若有两个相异零点,求证:.

(1)切线方程为;(2)实数的取值范围是;(3)详见解析.

解析试题分析:(1)将代入函数的解析式,利用导函数的几何意义,结合直线的点斜式求出切线的方程;(2)先求出函数的导数,对的符号进行分类讨论,结合零点存在定理判断函数在定义域上是否有零点,从而求出参数的取值范围;另外一中方法是将问题等价转化为“直线与曲线无公共点”,结合导数研究函数的基本性质,然后利用图象即可确定实数的取值范围;(3)从所证的不等式出发,利用分析法最终将问题等价转换为证明不等式在区间上恒成立,并构造新函数,利用导数结合函数的单调性与最值来进行证明.
试题解析:在区间上,
(1)当时,,则切线方程为,即
(2)①当时,有唯一零点
②当时,则是区间上的增函数,

,即函数在区间有唯一零点;
③当时,令
在区间上,,函数是增函数,
在区间上,,函数是减函数,
故在区间上,的极大值为
,即,解得,故所求实数的取值范围是
另解:无零点方程上无实根直线与曲线无公共点,
,则,令,解得,列表如下:




练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知.
(Ⅰ)求证:
(Ⅱ)设直线均相切,切点分别为()、(),且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)设(其中的导函数),求的最大值;
(Ⅱ)求证:当时,有
(Ⅲ)设,当时,不等式恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)讨论函数的单调性;
(2)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数的单调区间;
(2)若函数在[1,2]上是减函数,求实数的取值范围;
(3)令,是否存在实数,当 (是自然对数的底数)时,函数的最小值是.若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)若,求的单调区间;
(2)若当,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知点,函数的图象上的动点轴上的射影为,且点在点的左侧.设的面积为.

(Ⅰ)求函数的解析式及的取值范围;
(Ⅱ)求函数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,曲线过点P(1,0),且在P点处的切斜线率为2.
(1)求的值;
(2)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中.
(1)若对一切x∈R,≥1恒成立,求a的取值集合;
(2)在函数的图像上取定两点,记直线AB的斜率   为k,问:是否存在x0∈(x1,x2),使成立?若存在,求的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案