精英家教网 > 高中数学 > 题目详情
2.已知抛物线C:y2=4x与直线y=k(x+1)(k>0)相交于A,B两点,F为C的焦点,若|FA|=2|FB|,则k=$\frac{2\sqrt{2}}{3}$.

分析 根据直线方程可知直线恒过定点,过A、B分别作AM⊥l于M,BN⊥l于N,根据|FA|=2|FB|,推断出|AM|=2|BN|,点B为AP的中点、连接OB,进而可知|OB|=$\frac{1}{2}$|AF|,由此求得点B的横坐标,则点B的坐标可得,最后利用直线上的两点求得直线的斜率.

解答 解:抛物线C:y2=4x的准线为l:x=-1,直线y=k(x+1)(k>0)恒过定点P(-1,0),
如图过A、B分别作AM⊥l于M,BN⊥l于N,

由|FA|=2|FB|,则|AM|=2|BN|,点B为AP的中点、连接OB,则|OB|=$\frac{1}{2}$|AF|,
∴|OB|=|BF|,点B的横坐标为$\frac{1}{2}$,
故点B的坐标为($\frac{1}{2}$,$\sqrt{2}$)
∵P(-1,0),
∴k=$\frac{\sqrt{2}}{\frac{1}{2}+1}$=$\frac{2\sqrt{2}}{3}$
故答案为:$\frac{2\sqrt{2}}{3}$

点评 本题主要考查了抛物线的简单性质,考查抛物线的定义,考查直线斜率的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.函数f(x)=xex的最小值是-$\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.
(Ⅰ)根据茎叶图计算样本均值;
(Ⅱ)日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人?
(Ⅲ)在(Ⅱ)的条件下,从该车间12名工人中,任取3人,求恰有1名优秀工人的情况有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,四棱锥P-ABCD中,PA⊥底面ABCD,AD∥BC,BC=2AD=4,AB=CD,∠ABC=60°,N为线段PC上一点,CN=3NP,M为AD的中点.
(1)证明:MN∥平面PAB;
(2)求点N到平面 PAB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{3}$,$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow{b}$)=0,则|2$\overrightarrow{a}$-$\overrightarrow{b}$|=(  )
A.2B.2$\sqrt{3}$C.4D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知:矩形AA1B1B,且AB=2AA1=2,C1,C分别是A1B1、AB的中点,D为C1C中点,将矩形AA1B1B沿着直线C1C折成一个60°的二面角,如图所示.
(1)求证:AB1⊥A1D;
(2)求二面角B-A1D-B1的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,侧棱垂直于底面的三棱柱ABC-A1B1C1中,AB⊥AC,AA1+AB+AC=3,AB=AC=t(t>0),P是侧棱AA1上的动点.
(1)当AA1=AB=AC时,求证:A1C⊥BC1
(2)试求三棱锥P-BCC1的体积V取得最大值时的t值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在正三棱锥P-ABC中,D,E分别是AB,BC的中点.
(1)求证:DE∥平面PAC;
(2)求证:AB⊥PC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆中心在原点,焦点在x轴上,离心率e=$\frac{\sqrt{2}}{2}$,顺次连接椭圆四个顶点所得四边形的面积为2$\sqrt{2}$.
(1)求椭圆的标准方程;
(2)已知直线l与椭圆相交于M,N两点,O为原点,若点O在以MN为直径的圆上,试求点O到直线l的距离.

查看答案和解析>>

同步练习册答案