精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的短轴长为,过点的直线倾斜角为.

1)求椭圆的方程;

2)是否存在过点且斜率为的直线,使直线交椭圆于两点,以为直径的圆过点?若存在,求出直线的方程;若不存在,请说明理由.

【答案】1;(2)存在,直线的方程为

【解析】

1)由短轴长为,可得,由过点的直线倾斜角为可得,解出可得椭圆方程;

2)假设存在实数满足题意,联立直线方程和椭圆方程,消去,运用韦达定理,以及,又,化简整理,解出,注意检验判别式是否等于0,即可判断.

1)由椭圆的短轴长为,可得

∵过点的直线倾斜角为

,解得

∴椭圆的方程.

2)假设存在实数,满足题意,此时直线的方程为

将代入椭圆方程,得

,以为直径的圆过点

,即

,得

代入上式可得,解得

此时代入,满足题意,

故存在满足题意,

此时直线的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知过抛物线的焦点,斜率为的直线交抛物线于两点,且.

(1)求该抛物线的方程;

(2) 为坐标原点,为抛物线上一点,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥的底面为直角梯形,为直角,平面,且.

1)求证:

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】推进垃圾分类处理,是落实绿色发展理念的必然选择,也是打赢污染防治攻坚战的重要环节.为了解居民对垃圾分类的了解程度,某社区居委会随机抽取1000名社区居民参与问卷测试,并将问卷得分绘制频率分布表如下:

得分

男性人数

40

90

120

130

110

60

30

女性人数

20

50

80

110

100

40

20

1)从该社区随机抽取一名居民参与问卷测试,试估计其得分不低于60分的概率;

2)将居民对垃圾分类的了解程度分为比较了解“(得分不低于60)不太了解”(得分低于60)两类,完成列联表,并判断是否有95%的把握认为居民对垃圾分类的了解程度性别有关?

不太了解

比较了解

男性

女性

3)从参与问卷测试且得分不低于80分的居民中,按照性别进行分层抽样,共抽取10人,连同名男性调查员一起组成3个环保宜传队.若从这中随机抽取3人作为队长,且男性队长人数占的期望不小于2.的最小值.

附:

临界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省新课改后某校为预测2020届高三毕业班的本科上线情况,从该校上一届高三(1)班到高三(5)班随机抽取50人,得到各班抽取的人数和其中本科上线人数,并将抽取数据制成下面的条形统计图.

1)根据条形统计图,估计本届高三学生本科上线率.

2)已知该省甲市2020届高考考生人数为4万,假设以(1)中的本科上线率作为甲市每个考生本科上线的概率.

i)若从甲市随机抽取10名高三学生,求恰有8名学生达到本科线的概率(结果精确到0.01);

ii)已知该省乙市2020届高考考生人数为3.6万,假设该市每个考生本科上线率均为,若2020届高考本科上线人数乙市的均值不低于甲市,求p的取值范围.

可能用到的参考数据:取.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在等腰梯形中,两腰,底边的三等分点,的中点.分别沿将四边形折起,使重合于点,得到如图2所示的几何体.在图2中,分别为的中点.

1)证明:平面.

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知单调递增的等比数列满足:.的等差中项.又数列满足:.

1)求数列的通项公式;

2)若,且数列为等比数列,求的值;

3)若,且为数列的最小项,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两名同学参加一项射击比赛游戏,其中任何一人每射击一次击中目标得2分,未击中目标得0分.若甲、乙两人射击的命中率分别为,且甲、乙两人各射击一次得分之和为2的概率为.假设甲、乙两人射击互不影响,则值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合,对于,定义AB的差为AB之间的距离为

I)若,试写出所有可能的AB

II,证明:

i

ii三个数中至少有一个是偶数;

III)设中有m,且为奇数)个元素,记P中所有两元素间距离的平均值为,证明:

查看答案和解析>>

同步练习册答案