精英家教网 > 高中数学 > 题目详情
2.已知tan$α=\frac{3}{4}$,α∈[$π,\frac{3}{2}π$],则cosα的值是-$\frac{4}{5}$.

分析 由tanα的值及α的范围,利用同角三角函数间的基本关系求出cosα的值即可.

解答 解:∵tan$α=\frac{3}{4}$,α∈[$π,\frac{3}{2}π$],
∴cosα=-$\sqrt{\frac{1}{1+ta{n}^{2}α}}$=-$\frac{4}{5}$,
故答案为:-$\frac{4}{5}$

点评 此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知集合M={x|x2+3x=4},N={0,1,2},则M∩N=(  )
A.B.{1}C.{0}D.{2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若等差数列{an}的首项${a_1}=C_{5m}^{11-2m}-A_{11-3m}^{2m-2}(m∈{N^*})$,公差是${(\frac{5}{2x}-\frac{2}{5}\root{3}{x^2})^n}$的展开式中的常数项,其中n为7777-15除以19的余数,则等差数列{an}的通项公式an=-4n+104.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知P(-2,y)是角θ终边上的一点,且$sinθ=\frac{{\sqrt{5}}}{5}$,求cosθ,tanθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A、B、C所对的边分别为a、b、c,且a=4$\sqrt{2}$,b=4$\sqrt{3}$,A=45°,求角B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等差数列{an},满足a1=2,a3=6
(1)求该数列的公差d和通项公式an
(2)若数列{bn}的前n项的和为${b_n}=\frac{4}{{{a_n}•{a_{n+1}}}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.角α的终边上有一点(1,-2),则sinα=(  )
A.-$\frac{{\sqrt{5}}}{5}$B.-$\frac{2}{5}\sqrt{5}$C.$\frac{{\sqrt{5}}}{5}$D.$\frac{2}{5}\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.“直线l垂直于△ABC的边AB,AC”是“直线l垂直于△ABC的边BC”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分也非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设函数f(x)=$\left\{\begin{array}{l}{{x}^{2},|x|≥1}\\{x,|x|<1}\end{array}\right.$,若f(g(x))的值域是[0,+∞),则函数y=g(x)的值域为[0,+∞).

查看答案和解析>>

同步练习册答案