精英家教网 > 高中数学 > 题目详情
已知两点,且的等差中项,则动点的轨迹方程是(      )
A.B.C.D.
C

由题,所以动点的轨迹为以为焦点,4为长轴长的椭圆,即,所以动点的轨迹方程是.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

,椭圆方程为,抛物线方程为.如图所示,过点轴的平行线,与抛物线在第一象限的交点为,已知抛物线在点的切线经过椭圆的右焦点
(1)求满足条件的椭圆方程和抛物线方程;
(2)设分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.已知椭圆与双曲线有相同的焦点,则椭圆的离心率为      (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本小题满分14分)
已知椭圆的离心率为,且椭圆上一点与椭圆的两个焦点构成的三角形周长为
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线与椭圆交于两点,且以为直径的圆过椭圆的右顶点
面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分)
已知点,过点作抛物线的切线,切点在第二象限,如图.(Ⅰ)求切点的纵坐标;
(Ⅱ)若离心率为的椭圆恰好经过切点,设切线交椭圆的另一点为,记切线的斜率分别为,若,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知为椭圆的左、右顶点,为其右焦点,是椭圆上异于的动点,且面积的最大值为
(Ⅰ)求椭圆的方程及离心率;
(Ⅱ)直线与椭圆在点处的切线交于点,当直线绕点转动时,试判断以
为直径的圆与直线的位置关系,并加以证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

中,∠ABC=450,∠ACB=600,绕BC旋转一周,记以AB为母线的圆锥为M1,记以AC为母线的圆锥为M2,m是圆锥M1任一母线,则圆锥M2的母线中与m垂直的直线有   ▲ 条

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆C1的方程为,椭圆C2的方程为,C2的离心率为,如果C1与C2相交于A、B两点,且线段AB恰为圆C1的直径,求直线AB的方程和椭圆C2的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若M(x,y)是椭圆x2+=1上的动点,则x+2y的最大值为       .

查看答案和解析>>

同步练习册答案