精英家教网 > 高中数学 > 题目详情

(本小题满分10分)在直角坐标平面内,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是,直线的参数方程是为参数)。
求极点在直线上的射影点的极坐标;
分别为曲线、直线上的动点,求的最小值。

(1)
(2)

解析试题分析:解:(1)由直线的参数方程消去参数
的一个方向向量为
,则
,则,得:
代入直线的参数方程得,化为极坐标为
(2)

,则到直线的距离

 
考点:直线的参数方程,以及极坐标才考查
点评:解决的关键是对于直线与圆的位置关系的熟练运用,属于基础题。易错点就是公式间的转换问题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设椭圆C: 过点, 且离心率

(Ⅰ)求椭圆C的方程;
(Ⅱ)过右焦点的动直线交椭圆于点,设椭圆的左顶点为连接且交动直线,若以MN为直径的圆恒过右焦点F,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆右顶点到直线的距离为,离心率
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知A为椭圆与y轴负半轴的交点,设直线,是否存在实数m,使直线与(Ⅰ)中的椭圆有两个不同的交点M、N,是∣AM∣=∣AN∣,若存在,求出 m的值;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆 经过点其离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线与椭圆相交于AB两点,以线段为邻边作平行四边形OAPB,其中顶点P在椭圆上,为坐标原点.求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知抛物线经过椭圆的两个焦点.设,又不在轴上的两个交点,若的重心(中线的交点)在抛物线上,

(1)求的方程.
(2)有哪几条直线与都相切?(求出公切线方程)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)已知椭圆的左、右焦点分别为F1、F2,其中F2也是抛物线的焦点,M是C1与C2在第一象限的交点,且  
(I)求椭圆C1的方程;  (II)已知菱形ABCD的顶点A、C在椭圆C1上,顶点B、D在直线上,求直线AC的方程。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知椭圆的两焦点在轴上, 且两焦点与短轴的一个顶点的连线构成斜边长为2的等腰直角三角形。
(Ⅰ)求椭圆的方程;
(Ⅱ)过点的动直线交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点Q,使得以AB为直径的圆恒过点Q ?若存在求出点Q的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,的两个顶点的坐标分别是(-1,0),(1,0),点的重心,轴上一点满足,且.
(1)求的顶点的轨迹的方程;
(2)不过点的直线与轨迹交于不同的两点,当时,求的关系,并证明直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是抛物线(为正常数)上的两个动点,直线AB与x轴交于点P,与y轴交于点Q,且

(Ⅰ)求证:直线AB过抛物线C的焦点;
(Ⅱ)是否存在直线AB,使得若存在,求出直线AB的方程;若不存在,请说明理由。

查看答案和解析>>

同步练习册答案