精英家教网 > 高中数学 > 题目详情
20.若a=0.32,b=20.3,c=log0.32,则a,b,c由大到小的关系是b>a>c.

分析 根据指数函数和对数函数的图象和性质,分析出a,b,c的范围,进而可得答案.

解答 解:∵a=0.32∈(0,1),
c=log0,32∈(-∞,0),
b=20.3∈(1,+∞),
故b>a>c,
故答案为:b>a>c.

点评 本题考查的知识点是数的大小比较,指数函数和对数函数的单调性,其中熟练掌握指数函数和对数函数的图象和性质是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.计算:
(1)2log32-log3$\frac{32}{9}$+log38-5${\;}^{lo{g}_{5}3}$;
(2)sin810°+tan765°+sin1110°+cos(-660°).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.据测算:某企业某一种产品的年销售量m万件与年促销费用x万元(x≥0)满足m=6-$\frac{5}{x+1}$.已知该产品的前期投入需要4万元,每生产1万件该产品需要再投入10万元,企业将每件该产品的销售价格定为每件产品年平均成本的$\frac{3}{2}$倍.(定价不考虑促销成本).
(1)如果该企业不搞促销活动,那么该产品的年销售量是多少万件?
(2)试将该产品的年利润y(万元)表示为年促销费用x(万元)的函数;
(3)x为何值时,该产品的年利润最大,最大年利润是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a>b,则下列不等式中恒成立的是(  )
A.lna>lnbB.$\frac{1}{a}<\frac{1}{b}$C.a2>abD.a2+b2>2ab

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知x,y∈R+,且$x+\frac{y}{2}=1$,则$\frac{1}{x}+\frac{2}{y}$的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若函数f(x)=$\frac{{2}^{x}+1}{{2}^{x}-a}$是奇函数,则a=1,使f(x)>3成立的x的取值范围为(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若直线y=kx+2和曲线$\frac{{x}^{2}}{2}$+y2=1有一个公共点,则k的值为(  )
A.-$\frac{\sqrt{6}}{2}$B.$\frac{\sqrt{6}}{2}$C.±$\frac{\sqrt{6}}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.一个几何体的三视图如图所示,则该几何体的表面积=3π+2$\sqrt{7}$-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知双曲线$E:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左右焦点分别为F1,F2,若E上存在点P使△F1F2P为等腰三角形,且其顶角为$\frac{2π}{3}$,则$\frac{a^2}{b^2}$的值是(  )
A.$\frac{4}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{3}{4}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步练习册答案